

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 1 of 14

MetaWatch Firmware Design Guide

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 2 of 14

1 Contents

1 Contents ... 2
2 Introduction ... 3

2.1 Revision History .. 4
3 Hardware ... 5

3.1 Common Watch Features ... 5
3.2 Analog Watch .. 5
3.3 Digital Watch ... 5
3.4 Bluetooth Hardware Interface .. 5

4 Software Architecture .. 5
4.1 Bluetooth Software Interface ... 5
4.2 FreeRTOS .. 6
4.3 Tasks .. 6

4.3.1 Idle Task .. 6
4.3.2 Serial Port Profile .. 6
4.3.3 Display Task (LcdDisplay.c or OledDisplay.c) ... 6
4.3.4 LCD Driver Task (LCD only).. 6
4.3.5 Serial RAM Task ... 6
4.3.6 Background Task ... 6
4.3.7 Pedometer Task ... 6

4.4 Messages .. 6
5 Development Environment .. 6

5.1 Folder Structure .. 6
5.2 First Steps ... 7

5.2.1 Linker Options ... 10
5.2.2 Programming Options .. 11

5.3 Debugging using IAR Embedded Workbench ... 12
6 The Pedometer Task – An Example .. 13

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 3 of 14

2 Introduction

The MetaWatch Bluetooth enabled Analog and Digital watches allow anyone to develop custom applications for
their phones and watches. The development of an application for the phone is not described in this document. The
watch uses the Bluetooth Serial Port Profile (SPP).

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 4 of 14

2.1 Revision History

Revision Details Date
1.0 Original Release 29 SEP 2011

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 5 of 14

3 Hardware

3.1 Common Watch Features

Each watch can be charged, programmed, and debugged using the 4 pin Spy-Bi-Wire interface and clip.
Each watch contains the logic required to recharge the 3.7V 75mAH lithium ion coin cell. The charging circuit also
prevents the cell from being discharged too much. The MSP430’s analog to digital conversion circuitry allows the
battery voltage to be monitored.
The watch contains a vibrator. Its default use is to notify the user of a new call or message, signal a low battery, and
to indicate that the Bluetooth link is lost.
The watch contains a KIONIX KXTF9-4100 or KXTF9-1026 accelerometer. It can be used to turn the watch into a
pedometer or accept tap commands.
The Bluetooth radio is the Texas Instruments CC2560. The radio’s current in sniff mode when non-discoverable
and non-connectable is <100 µA.
The watch also contains a light sensor. The light sensor can be used on the Analog Watch to control the contrast of
the OLED displays.

3.2 Analog Watch

The analog watch has an analog face and two OLED displays. Each display can be controlled independently. The
analog watch has 3 buttons. The middle button is also a pull switch.

3.3 Digital Watch

The digital watch contains a 96x96 pixel LCD display. This low power display consumes less than 5 µA when the
display is static. The digital watch has 6 buttons.
In addition, the digital watch contains a Microchip 23A640 serial ram. The 8K bytes of ram are used as a display
buffer.

3.4 Bluetooth Hardware Interface

The Bluetooth radio interface consists of a serial port running at 115.2 kbits/s. The serial port speed limits the
Bluetooth throughput to 80 kbits/s. With the current buffer configuration the receive rate is limited to 30 kbits/s.
Clear to Send (CTS) is used to wake the microcontroller when the radio is in sniff mode. This allows the MSP430
to remain in a low power mode while waiting for messages from the phone.

4 Software Architecture

This design uses RTOS tasks to separate functions. Inter-task communication uses messages and queues.

4.1 Bluetooth Software Interface

This project contains a Bluetooth stack specifically tailored to the abilities of the Texas Instruments
MSP430F5438A. The serial port profile (SPP) was chosen for this project. The application interface is through
SerialProfile.h. After calling InitializeSppTask() the SPP task will open the stack, enabled pairing, and allow a
connection to be made. It will also automatically go into sniff mode. The user does not have to worry about the
details of the Bluetooth connection.
The user application can control turning the radio on/off (which includes opening and closing the stack), setting sniff
parameters, disabling sniff completely, and the sniff mode entry delay.
For the full API see the Doxygen output (index.html).

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 6 of 14

4.2 FreeRTOS

FreeRTOS version V6.0.5 was used for this project. FreeRTOS provides task, queues, semaphores, and the OS tick.
The tick occurs at a 1 millisecond rate. At each tick the scheduler switches between tasks that are ready to run.
Some deficiencies of the RTOS become apparent when trying to create a low power system, but those problems are
outweighed by benefits. The RTOS provides some assurance that each task will get a fair share of the processor.
With an RTOS, the software is simpler to write.

4.3 Tasks

Tasks were used to separate each of the main functions.

4.3.1 Idle Task
The idle task is used to control entry into low power mode (LPM). When the queues for all tasks are empty and the
Bluetooth Serial Port is ready to sleep the micro will enter LPM3. A timer interrupt or message from the radio can
wake the microcontroller.

4.3.2 Serial Port Profile
The serial port profile and underlying stack require 4 tasks. This cannot be changed by the user. The Serial Port
Profile handles creating the Bluetooth connection and processes incoming and outgoing messages.

4.3.3 Display Task (LcdDisplay.c or OledDisplay.c)
The display task keeps track of the current mode of the watch. It draws the clock and other system screens. The
display task handles the button presses and generates menus.

4.3.4 LCD Driver Task (LCD only)
The LCD driver task uses direct memory access (DMA) to write screen data to the LCD.

4.3.5 Serial RAM Task
This task uses DMA to read and write data from the serial ram. The serial ram task handles addressing the different
buffers. When the phone draws a screen into memory it is handled by the serial ram task.

4.3.6 Background Task
The command task handles buttons, vibration, timers, and other functions. For example it handles the Get Device
Type message, the Set Vibrate Mode message, and the Set Real Time Clock message.

4.3.7 Pedometer Task
The pedometer task is an example task. It sets up the accelerometer to detect motion.

4.4 Messages

Messages are used for communication with the phone and for inter-process communication. These are defined in
Messages.h. User created messages must be in the range of 0x60-0x9f to insure compatibility with future revisions.
The RouteMsg() and RouteMsgFromIsr() functions are used to send messages to the correct queue (task).

5 Development Environment

IAR Embedded Workbench for the MSP430 version 5.20 was used for this project.

5.1 Folder Structure

• Common – Files that are common to the Serial Port Profile and user application

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 7 of 14

o Application
o FreeRTOS
o Hardware

 OSAL – Non-volatile storage functions provided by Texas Instruments

• Library – The two library files for the Serial Port Profile (stack).

• Settings – IAR workspace settings

• Watch – The user application
o Application
o Hardware - Hardware abstraction layer

 F5xx_F6xx_Core_Lib – Low level files provided by Texas Instruments
o Project – IAR project settings

5.2 First Steps

Open the workspace file Theta.eww. One of four projects can be selected Devboard, Digital, Analog, or Analog
Devboard. Choose Digital for the digital watch. These instructions will also work for the Analog watch.

Right click on Watch-Digital and select options. Go to the C/C++ compiler category and select the preprocessor tab.

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 8 of 14

From this page we can see the directories used for the project
They are:

$PROJ_DIR$\..\..\Common\FreeRTOS\include
$PROJ_DIR$\..\..\Common\FreeRTOS\portable\MSP430F5438
$PROJ_DIR$\..\..\Common\Hardware
$PROJ_DIR$\..\..\Common\Hardware\OSAL\
$PROJ_DIR$\..\..\Common\Application
$PROJ_DIR$\..\Hardware
$PROJ_DIR$\..\Hardware\F5xx_F6xx_Core_Lib\
$PROJ_DIR$\..\Application

The defined symbols that make this project build as a digital watch are also visible. They are:
DIGITAL
WATCH
DMA
LPM_ENABLED
xTASK_DEBUG

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 9 of 14

Removing the “x” from TASK_DEBUG will cause the compilation to change. When built with this option
the memory usage of each task is printed at a regular interval. The format is “Free Used Total” and is in
words (16 bits) not bytes.

Go to the linker configuration page. The special linker file determines where the non-volatile (OSAL)
items are stored.

o

Another important page, which is also in the linker category, is the Extra Options page. This is where the Serial Port
Profile (stack) libraries are linked in. Without this there will be undefined functions after the linker has run.

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 10 of 14

5.2.1 Linker Options

To build the project select Project->Rebuild All. The following output will be generated:

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 11 of 14

These warnings can be safely ignored.

5.2.2 Programming Options
It is important to make sure the checkmark to allow erase/write access to locked flash memory is not selected.
Important calibration information is stored in Information Memory Segment A. If it is erased the accuracy of the
timekeeping will be affected.

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 12 of 14

5.3 Debugging using IAR Embedded Workbench

To debug the watch using IAR (or to program it) connect the clip to the watch and the USB cable to the PC. It is
preferable to connect the USB directly to the USB and not through a USB port replicator.
Press the play button.

A message will pop up indicating the download is occurring. Now press the go button.

The debugger allows one to set breakpoints, examine memory, and single step through the code.

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 13 of 14

6 The Pedometer Task – An Example

The pedometer task is an example task. It could contain the code for a pedometer application.

6.1 Queue and Task Creation

Each task has a queue. Queues are used for communication between tasks. Messages from the phone can also be
routed to a task’s queue. The controlling parameter for a queue is its length. The size should be kept as small as
possible. All queues in this system operate on the same type of object; the tMessage object. When objects are
placed into a queue they are copied.

#define PEDOMETER_TASK_MSG_QUEUE_LEN (8)
#define PEDOMETER_TASK_STACK_DEPTH (configMINIMAL_STACK_DEPTH + 20)
#define PEDOMETER_TASK_PRIORITY (tskIDLE_PRIORITY + 1)

void InitializePedometerTask(void)
{
 QueueHandles[PEDOMETER_QINDEX] =
 xQueueCreate(PEDOMETER_TASK_MSG_QUEUE_LEN, MESSAGE_QUEUE_ITEM_SIZE);

 xTaskCreate(PedometerTask,
 "PEDOMETER",
 PEDOMETER_TASK_STACK_DEPTH,
 NULL,
 PEDOMETER_TASK_PRIORITY,
 &PedometerTaskHandle);

}

The stack depth determines how much memory is allocated to the task at run time. Each task requires a minimum
amount of memory to handle interrupts. The additional memory is required to store local variables. The
InitializePedometerTask() creates a queue and a task.

6.2 Message Handling

The PedometerTask starts by configuring the accelerometer for operation. Once this is complete all future activity
occurs due to an interrupt from the accelerometer. The PedometerTask waits for a message in its queue. When it
receives a message it is processed by the handler. After a message is processed it is sent to the free queue.

/* from PedometerTask() */
 for(;;)
 {

 if(pdTRUE == xQueueReceive(QueueHandles[PEDOMETER_QINDEX],
 &PedometerTaskMsg, portMAX_DELAY))
 {
 PedometerTaskMessageHandler(&PedometerTaskMsg);

 SendToFreeQueue(&PedometerTaskMsg);

 CheckStackUsage(PedometerTaskHandle,"Pedometer Task");

 }

 }

When an interrupt occurs a message is sent. It is not shown here, but when this interrupt occurs the processor is

Revision 1.0 October 3, 2011
MetaWatch Firmware Design Guide Page 14 of 14

brought out of LPM3 (if required).

void AccelerometerWakeOnThresholdIsr(void)
{
 tMessage Msg;
 SetupMessage(&Msg,AccelerometerWakeMsg,NO_MSG_OPTIONS);
 RouteMsgFromIsr(&Msg);
}

The RouteMsgFromIsr() function in MessageQueues.c is responsible for sending the message to the correct queue.
For each message that is added, the corresponding lines in MessageQueues.c must be added.

case AccelerometerWakeMsg: SendMsgToQ(PEDOMETER_QINDEX,pMsg); break;

	1 Contents
	2 Introduction
	2.1 Revision History

	3 Hardware
	3.1 Common Watch Features
	3.2 Analog Watch
	3.3 Digital Watch
	3.4 Bluetooth Hardware Interface

	4 Software Architecture
	4.1 Bluetooth Software Interface
	4.2 FreeRTOS
	4.3 Tasks
	4.3.1 Idle Task
	4.3.2 Serial Port Profile
	4.3.3 Display Task (LcdDisplay.c or OledDisplay.c)
	4.3.4 LCD Driver Task (LCD only)
	4.3.5 Serial RAM Task
	4.3.6 Background Task
	4.3.7 Pedometer Task

	4.4 Messages

	5 Development Environment
	5.1 Folder Structure
	5.2 First Steps
	5.2.1 Linker Options
	5.2.2 Programming Options

	5.3 Debugging using IAR Embedded Workbench

	6 The Pedometer Task – An Example
	6.1 Queue and Task Creation
	6.2 Message Handling

