FET-Pro430

MSP430 Flash Programmer

User’s Manual

Software version 2.8

PMO014A01 Rev.9
April-05-2010

Elprotronic Inc.

16 Crossroads Drive

Richmond Hill,

Ontario, L4E-5C9

CANADA

Web site: www.elprotronic.com
E-mail: info @elprotronic.com
Fax: 905-780-2414

Voice: 905-780-5789

Copyright © Elprotronic Inc. All rights reserved.

Disclaimer:

No part of this document may be reproduced without the prior written consent of Elprotronic Inc.
The information in this document is subject to change without notice and does not represent a
commitment on any part of Elprotronic Inc. While the information contained herein is assumed to
be accurate, Elprotronic Inc. assumes no responsibility for any errors or omissions.

In no event shall Elprotronic Inc, its employees or authors of this document be liable for special,
direct, indirect, or consequential damage, losses, costs, charges, claims, demands, claims for lost
profits, fees, or expenses of any nature or kind.

The software described in this document is furnished under a licence and may only be used or copied
in accordance with the terms of such a licence.

Disclaimer of warranties: You agree that Elprotronic Inc. has made no express warranties to You
regarding the software, hardware, firmware and related documentation. The software, hardware,
firmware and related documentation being provided to You “AS IS” without warranty or support
of any kind. Elprotronic Inc. disclaims all warranties with regard to the software, express or implied,
including, without limitation, any implied warranties of fitness for a particular purpose,
merchantability, merchantable quality or noninfringement of third-party rights.

Limit of liability: In no event will Elprotronic Inc. be liable to you for any loss of use, interruption
of business, or any direct, indirect, special incidental or consequential damages of any kind
(including lost profits) regardless of the form of action whether in contract, tort (including
negligence), strict product liability or otherwise, even if Elprotronic Inc. has been advised of the
possibility of such damages.

END USER LICENSE AGREEMENT

PLEASE READ THIS DOCUMENT CAREFULLY BEFORE USING THE SOFTWARE AND
ASSOCIATED THE HARDWARE. ELPROTRONIC INC. AND/OR ITS SUBSIDIARIES
(“ELPROTRONIC”) IS WILLING TO LICENSE THE SOFTWARE TO YOU AS AN
INDIVIDUAL, THE COMPANY, OR LEGAL ENTITY THAT WILL BE USING THE
SOFTWARE (REFERENCED BELOW AS “YOU” OR “YOUR”) ONLY ON THE CONDITION
THAT YOU AGREE TO ALL TERMS OF THIS LICENSE AGREEMENT. THIS IS A LEGAL
AND ENFORCABLE CONTRACT BETWEEN YOU AND ELPROTRONIC. BY OPENING THIS
PACKAGE, BREAKING THE SEAL, CLICKING “I AGREE” BUTTON OR OTHERWISE
INDICATING ASSENT ELECTRONICALLY, OR LOADING THE SOFTWARE YOU AGREE
TO THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO
THESE TERMS AND CONDITIONS, CLICK ON THE “I DO NOT AGREE” BUTTON OR
OTHERWISE INDICATE REFUSAL, MAKE NO FURTHER USE OF THE FULL PRODUCT
AND RETURN IT WITH THE PROOF OF PURCHASE TO THE DEALER FROM WHOM IT
WAS ACQUIRED WITHIN THIRTY (30) DAYS OF PURCHASE AND YOUR MONEY WILL
BE REFUNDED.

1. License.

The software, firmware and related documentation (collectively the “Product”) is the property of
Elprotronic or its licensors and is protected by copyright law. While Elprotronic continues to own
the Product, You will have certain rights to use the Product after Your acceptance of this license.
This license governs any releases, revisions, or enhancements to the Product that Elprotronic may
furnish to You. Your rights and obligations with respect to the use of this Product are as follows:

YOU MAY:
A. use this Product on a single computer;
B. make one copy of the software for archival purposes, or copy the software onto the hard disk

of Your computer and retain the original for archival purposes;
C. use the software on the network, provided that You have a licensed copy of the software for
each computer that can access the software over that network

YOU MAY NOT:
A. copy the printed documentation that accompanies this Product

B. sublicense, reverse engineer, decompile, disassemble, modify, translate, make any attempt
to discover the Source Code of the Product; or create derivative works from the Product;
C. redistribute, in whole or in part, any part of the software component of this Product.

2. Copyright

All rights, title, and copyrights in and to the Product and any copies of the Product are owned by
Elprotronic. The Product is protected by copyright laws and international treaty provisions.
Therefore, you must treat the Product like any other copyrighted material.

3. Limitation of liability.

In no event shall Elprotronic be liable to you for any loss of use, interruption of business, or any
direct, indirect, special, incidental or consequential damages of any kind (including lost profits)
regardless of the form of action whether in contract, tort (including negligence), strict product
liability or otherwise, even if Elprotronic has been advised of the possibility of such damages.

4. DISCLAIMER OF WARRANTIES.

You agree that Elprotronic has made no express warranties to You regarding the software, hardware,
firmware and related documentation. The software, hardware, firmware and related documentation
being provided to You “AS IS” without warranty or support of any kind. Elprotronic disclaims all
warranties with regard to the software and hardware, express or implied, including, without
limitation, any implied warranties of fitness for a particular purpose, merchantability, merchantable
quality or noninfringement of third-party rights.

Table of Contents

L INtroduction 7
2. Features 8
3. Getting Started e 9
3.1 Software Installation 9

3.2 Driver Installation 9

3.3 Hardware Installation 10

34 Starting up “FET-Pro430" Flash Programmer 10

4. Programming Dialogue Screen i 11
4.1 Microcontroller Type 12

4.2 Code File Management0uuiintiuinnennennenn.. 13

4.3 Blow Security Fuse and Open Password File 15

4.4 Power Device from Adapter 17

4.5 Device Action boX 17

4.5.1 AutoProgrambutton 18

452 Verify SecurityFuse 19

453 EraseFlashbutton i, 19

454 Blank Checkbutton 20

455 Write Flashbutton 20

4.5.6 VerifyFlashbutton 21

4577 Read/CopyFlashbutton 21

4.6 Nextbutton e 23

5. DAA VIEWEES . . oo o e 25
6. Memory Option Dialogue Screen 28
6.1 Memory Erase/Write/Verify Group 29

6.2 Read Groupiii 31

6.3 Verification Group e 31

6.4 Write/Read the BSL Flash sectors in the FSxx/Foxx MCUs 32

7. Target’s Connection - Reset Options 34
7.1 Communication with Target Device 34

7.2 ReSEtOPLIONS . ..ottt e e 35

7.3 Final Target Device action, 35

7.4 CONNECHION . . ottt e e e e et e e 35

7.5 Used Adapter e 36

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 5

8. Serialization it e 39

8.1 Introduction e 39

8.2 Serialization Dialogue Screen i 40

8.2.1 Serial numberFile 41

8.2.2 Serial number formats 41

8.2.2.1 HEX (MSW first) and HEX (LSW first) format 42

8222 BCD format 45

8223 ASCII format.......... 48

8.2.3 Model, Group, Revision 51

8.2.4 Device Serializationbox 51

8.2.5 BarCode Scanner setupuiuiiniininnnnennen.. 52

8.3 Serialization Report Dialogue Screen 53

8.4 SNdatafile i 54

9. Check Sum OPLIONS e e e e e e et e 58
9.1 Check SUmM typeso i e 61

10. BSL Password and ACCESS v v ittt e et et e e 66
11. Load/Save Setup e 68
I1.1 Load/Save Setupiuiii e 68

11.2 Load/Save Projectiiii i 68

11.3 Commands combined with the executablefile 72

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 6

1. Introduction

FET-Pro430 programming software is a software package designed to operate with existing
programming adapters provided by Texas Instruments and other vendors. FET-Pro430 requires
device drivers and libraries (DLL) provided by adapter manufacturers, while supplying the software
features you have come to expect and rely upon from Elprotronic, Incorporated. The FET-Pro430
can program Texas Instruments MSP430Fxx family of microcontrollers via JTAG interface, using
the parallel or USB ports. The programming speed and the size of the code that can be programmed
are dependent only on the interface adapter and the target device.

To simplify production process, the programming software package can assign serial number,
model type, and revision number. Each serial number is unique for each programmed device and is
assigned automatically. Several serial number formats are available.

There are a number of erase/write options also available. This allows to erase/write all flash
memory, or just the specified fragment of memory. This feature is very useful when only part of
programmed data/code should be replaced. For example this feature can be used to download the
serial number, calibration data or personality data without losing existing program code.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 7

2. Features

FET-Pro430 programming software is designated to program the Texas Instruments
MSP430Fxx microcontroller family via the JTAG interface using MSP430.dll driver and Texas
Instrument’s Flash Emulation Tool (FET) adapter.

Major features of the FET-Pro430 programmer are:

* FET-Pro430 programming software is a shell that uses the Texas Instruments’ MSP430.dll
driver to facilitates communication with the target device and TT’s programming adapters -
parallel port Flash Emulation Tool (FET) or TI-USB-FET. Communication speed is
determined by the MSP430.dll driver and used FET

* Supports all MSP430Fxx microcontrollers from TI

* Blow the JTAG security fuse

* Full memory or sector memory erase

* Write Check Sum verification

* No code size limitations

* Target device can be powered from the programming adapter or from external source.

* Easy to use Windows™ based software.

* Programmer accept TI (*.txt), Motorola (*.s19) and Intel (*.hex) data files for programming.
* Combine code files

* Lock setup capability, useful in production

* Software package can assign and automatically increment serial number, model type and

revision. Serial Number with or without an automatically inserted current date can be stored
in the FLASH memory in HEX, BCD or ASCII format. Log file capability allows to review
information about the flashed target devices.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 8

3. Getting Started

FET-Pro430 programmer package contains:

1. One READ ME FIRST document.
2. One FET_Pro430 Flash Programmer CD ROM (Software + Manual).

3.1 Software Installation

The FET-Pro430 Programming Software runs on PC under Windows ™ ME, WinNT, 2000 or XP.
Follow instructions below to install the software:

1. Insert the FET-Pro430 Programming Software CD into your CD-ROM drive.

2. FET-Pro430 Programmer Setup wizard appears automatically. Click Install FET-Pro430
Flash Programmer to begin the installation process.

3. If the Setup wizard does not start automatically, click the Start button and choose the Run
dialogue box. Type “D:\SETUP.EXE”, where D represents the drive letter of your CD-ROM
drive. Then click the OK button.

4. Once the installation program starts, on-screen instructions will guide you through the
remainder of the installation. You must accept licence agreement before using software.

FET-Pro430 programming software uses standard TT’s MSP430.dll library and TT’s programming
adapter (FET). Current version of the software package contains TI’'s MSP430.dll and HIL.dlI
supporting the MSP430-FET (parallel port version) and MSP-FET430UIF (USB port version).
To connect to the programming adapter, select the parallel port (LPT1, LPT2, or LPT3) or USB port
(TI-USB) as described in section 7.3.

3.2 Driver Installation

Parallel port FET requires DriverX to be installed. The DriverX should be installed with the
Kickstart software. Follow instruction attached to your tool (FET) from TI. No additional action is
requited to activate the driver for the parallel port FET. The USB driver for the MSP-FET430UIF
can be installed using the latest KickStart software, or the TI’s USB driver attached to the current
FET-Pro430 software package can be used. Follow instructions below to install TI’s USB driver:

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 9

1. Plug in the MSP-FET430UIF to the PC USB Port, using provided cable extender (USB-A

to USB-B)
2. The “New hardware has been found” should be displayed
3. Instruct the Wizard to install the hardware driver from a specific location
4. Point the Hardware Wizard to the according folder where the corresponding driver

information files are located on your hard disc. Drivers in the previously installed software
are located (on a default installation) in directory:
C:\Program Files\Elprotronic\FET-Pro430 Flash Programmer\USB-Driver\WinXp
5. Driver installation process will start. Note, that Windows XP shows a warning that the driver
is not certified by Microsoft. Ignore this warning and click “Continue Anyway”
Note that the driver installation wizard starts twice, as two drivers are installed. Reboot computer
at the end.

3.3 Hardware Installation

Follow instruction attached to your hardware tool (FET) from TIL.
3.4 Starting up “FET-Pro430" Flash Programmer

To start the FET-Pro430 Flash Programmer click on the FET-Pro430 Elprotronic icon.

Ed MSF

FET-Prog30
Elprotronic

Figure 3.3-1

Once started the software will attempt to access the programming adapter. If no error messages
appear then the software has initialized without a problem and you may begin using it. However, if
the programming adapter is not detected an error message will appear. To correct the problem, make
sure that the connection cable is properly attached and the driver (Parallel Port or USB) is installed.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 10

4. Programming Dialogue Screen

E FET-Pro430 (FET M5P430 Flash Programmer) - Elprotronic Inc. = IEli‘
File Wiew Setup Serialization Tools About/Help
pen Code File == | ftest- bt path: | C:AE IprotronicFroject 5 ~ Blow Secunty Fuse
Cpen Code Fil J2k2 th: |C::El ichProject'MSP-APFLAT 1 Blow Security F
: [Enable
S File | i~ Power Device from Adapter—— |:| BLEW ELISE |
~ Microcontroller Type — Status | 22y - l Device
Group: I MSP430F T j Pass Woltage | —Device Action
MSP430F-| 163 ~] poweREryrE | [I Reload Cade File
Total | RESET | [~ || [autorros |
Target: | MSP430F159 Balance: | 0
BSL: | ver. 1.61 | - Check Sum E ety Securty Fuze |
Source; I 2020E 7B 4
~ Selected Device Information
. ERASE FLASH
RAM - 2048 bytes: FLASH - B0 kE; Memory: [0x2030E784 |3/ & |
Report : e BLAME CHELCK.
"Yerifying Security Fuse 1] 4 ﬂ ~ Device Serialization E |
Reading Target Label..... done ;
Erasing Memomn ..o veeeeeeeeeenns dore IEI'I alislae E WRITE FLASH |
TAG communication initialization. ..]
Al memary Blank checking............. (] 4 I 20030030 Fead SNl E CIRTE S Mot |
: ode
Flajs_h PrOgramming done Mest Model Group-Bevision:
Writing SM - 20080030 done |
Wernifying check sum ... k. 01 FAOT 4202 rewd
erifying SM and Label ... done E pERIHE R ol |
Reading Target Lal:uel...: done Mext SM: | 20080031
-------- D OMNE -~ [muntime = 19.3 sec.] Format sy 1234] READ / COPY |
Part: LFT-1 Eraze / 'wiite memony ophion;
JTAG [d-wirez) * All bemony * —alUTO PROGRARM
MEXT [F5]

Figure 4-1. Programming dialogue box screen.

The programming dialogue box (see Fig. 4-1.) contains a pull down menu, interface selection

box, blow fuse box, device action buttons, report (status) window, open file buttons, processor
information box, serial number box, power DC status and check sum result boxes.

FET-Pro430 - MSP430 Flash Programmer

PMO14A01 Rev.9

11

All device action buttons, power ON/OFF button and the check sum result box have their
own status indicators. Each indicator can assume any of the following conditions:

- blank - idle status.

- yellow - Test in progress. For power on/off - DC voltage is correct.

- green - access enabled.

- red sign - access denied. For power on/off - DC voltage is too low (below 2.6V)
- device action has been finished successfully.

XE@OOr

- device action has been finished, but result failed.

2N

- applies to blank check only - Memory is not clean, but the specified memory segment is.

4.1 Microcontroller Type

The microcontroller type can be selected from the pull down Beenboietic s | IE

field of the processor type group. The pull down field contains a list
of all microcontrollers in MSP430Fxx family currently available. One LRI | I
thing to note, the microcontroller type can be selected automatically if | Microcantialler Type

the option ‘Any’ is selected. Group: [MSP430FTwe x|
MSP4a0F-[169 7|
When communication between microcontroller and Teitet I_ H%g 7
programming adapter is initialized, the software will detect the target 122
microcontroller’s automatically. The type of detected microcontroller BoL: |_ 1222 |
is displayed in the field ‘Target:’. This allows the software to warn | Selected [} Egg 1
you if the connected microcontroller does not match the one specified RAS Eg)
by the user. Feport 147 L

Werifying S5e| 1471
Reading Ta|142
Erazing men 1431
JTAG comm 149 :
type is selected. All memory B 1491 .
Flazh pragrg 155
afriting SH {186
Werifving chy 157
Werifying SM 1610
Reading Ta|1611
-------- DOM1ETZ

Figure 4.1-1

Note: No warning message will appear when ‘Any’ microcontroller

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 12

4.2 Code File Management

FET-Pro430 flash programmer provides a few options to manage code files. These options
allow the user to open a code file, combine several code files into a single file, and save the
programming data into a code file. Following code formats are supplied - Texas Instruments *.txt,
TI's Code Composer Essentials *.out, Intel *.hex, Motorola *.s19, *.s28, *.s37, IAR UBROF-9
*.d43 and IAR debug (Intel or Motorola) *.a43 formats. When the TI’s CCE file is used then the
path for the TI’s hex430.exe file should be specified. See Preferences dialog for details.

open 2|

Laak, in: I = TmpCode j) i =
(= Biirk-2011.d43 ﬂ Eval_Blink.txt best-32k2 bt
Blink-2011. Ext E] mempiew bxt] test-s5k, bt
EE:] BSLPassword. bxk mTarget_m.hex E] kest- 120k, bxt
Code, bxk E] Target_m.kxk kest-120k-main, bxk
El code_menn.txt besk-2k, bt [E] vest-120k-t bt
El eB1.txt test-4k, bxt [E] test-512bvtes txt
a | i

File name: Itest-2k.t:-:t Open I

Files of type: |t:-:t £197528° 537, " hew, % d43, " 243, " :J Cancel |

3, %443, "

Te:-:aslnstruments[t:-:t]
Motorola %519, ®.228, *.237)
Intel [* hex)]

IR [ubraf 9] [*.d43]

debug IntelMotarola [*.a43)
Tl's CCE [*.aut]

Figure 4.2-1

The Open Code File button, or the Open Code File from the FILE pull down menu, prompts
for opening the object file that contains the code data, as shown in Figure 4.2-1. When the file is
selected the contents of the object file are downloaded into the PC memory. If the selected
microcontroller does not have enough memory to fit the data contained in the code file, the warning
message in Figure 4.2-2 will be displayed.

When code file is open and read successfully the code file name and full path will be
displayed on the right side of the Open Code File button (see Fig.4-1 Programming dialogue box
screen). Check sum calculated from the code file will be displayed in the “Check sum - Source”
window. Contents of the selected file can be viewed by the selecting of ‘Code File Data’ from the

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 13

warning x|
ode size exceeds FLASH memory
! available on the microcontroller,

Check the code File
or change the microcontroller,

Excess data will be ignored,

(8] 4

Figure 4.2-2

‘View’ menu (see chapter 5).

The Combine Code Files option allows up to 40 code files to be loaded into the PC memory.
When this option is selected the programmer will create a new data block, which will contain the
combined data of the user selected files. In order to add a code file to the newly created data block,
the user needs to press the ADD Code File button. The programmer will then prompt the user to
specify the code file to be appended to the newly created memory block, using the window in Figure

x|
File 1 — DK : sach_16k_1.txt |
4dd Code File | File 2 — O sach 16k _2 txzt
File 3 - 0K : =mach 16k 3 txt
File 4 — QK : Readle. txt
,— Addre==: 0=xl1Z00 — Ox2366

Start Addres= in Flash

I O0x1200

| &dd File Contents |

Clear All |

e |

Figure 4.2-3

4.2-1. Every appended file will be verified, so that the total code size does not exceed the target
microcontroller’s memory space and that there is no overlap with previously selected code segments.
After the addition of each file the window in Figure 4.2-3 will be shown. The window shows the
status of previous append operations.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 14

The Programmer is also able to append files of any type to the new data block. In order to
do this the user must specify the memory location into which the programmer is to load the file and
then press the Add file contents button. The window in Figure 4.2-1 will appear prompting the user
to specify the file to be added. Once the file is added to the new memory block, the programmer will
display the memory space occupied by the selected file. An example of this is shown in Figure 4.2-3
for the file number 4.

The Save Code File option saves the data currently contained within the PC code data block
into a code file. When the user selects this option from the File menu, the window in Figure 4.2-4
will appear, prompting for the name of the file to be created.

All of the aforementioned Code File options work with three most popular code file formats.
These formats are the Texas Instruments, the Motorola and the Intel file formats. FlashPro430 will
work with any of these formats and will easily convert one file format to another by using the Open

savens R e
Save in:l'_') MFG LI o) * -

A5010X02-1w]1 . kxk

=] AS010-02-1v2 Ext

=| Mspadapker_v10.kxt

=| Mspadapker_%11.kxk

|2] MspAdapter_Y11_ald.bxk
MspAdapter W12, kxk

it |

Il
3

RCE S

1l
—3

File name: | Save

Save a3 type: ITexasInstrument& Forrnat [ket ;I Cancel |

Texaz [nztruments format [et
b atorola format [*.219)
Intel format (% hes)

Figure 4.2-4
Code File and Save Code File options.

4.3 Blow Security Fuse and Open Password File

The microcontroller’s memory is protected against unauthorized access. When the
microcontroller is accessed via the JTAG interface, then the Security Fuse if blown is protecting
access to the microcontroller. Blowing the Security Fuse is not reversible and when done, then the
JTAG interface becomes unusable.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 15

When JTAG interface is selected, then ‘Verify Security Fuse’ button allows to verification,
if the fuse is blown or not. Fuse is verified also at the beginning of any device action command.
To blow the Security Fuse the check mark ‘Enable’ must be selected first (see Figure 4.3-1).

Blow Secunty Fuze
¥ Enable

[] BLOwFUSE |

Figure 4.3-1

Because blowing of the Security Fuse is not reversible, the following warning message is displayed
when check mark is selected to be enabled.

Blow the Security Fuse Procedure is MOT reversible! il
! When Fuse is blowen, then microcontraoller

is not accessible wia the ITAG interface,

Wyauld wou like to enable the option of blowing the Security Fusey

Yes MNo

Figure 4.3-2

Note: Ifthe option of blowing the Security Fuse is enabled, then if AUTO PROGRAM device action
is selected, the fuse will be blown without warning.

When ‘BLOW FUSE’ _ button is pressed, then
two following warnings warning = are displayed, before
fuse will be blown. Elow the Security Fuse Procedure is NOT reversible! 1]

! When Fuse is blown, then microcontroller

i= not accessible via the 1TAG interface.

Do yiou skill wish ko blow the Security Fuse?

Yes Mo

Figure 4.3-3

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 16

Warning X
'l' "11., Sre You sure?
]

Yes I Mo |

Figure 4.3-4

When the button ‘YES’ is pressed twice, the procedure of blowing the security fuse will be initiated.
When Security Fuse is blown, the JTAG interface becomes inoperable.

4.4 Power Device from Adapter

The programming adapter is powered from the | Fower Device from Adapter
USB Portinterface. By clicking POWER ON/OFF button Im Fiaieie
you can turn the power on or off on the target device. If olkage
programming adapter has capability to program the output POWER OM/OFF I D
DC level (like TI-USB-FET), then the desired Vcc can be
selected between 2.2 to 3.6 V using selector box (figure RESET | I—

4.4-1). If th 1 llel port ion of FET i d,)
) e popular para‘ e‘ port version o is use Figure 4.4-1
then the setup of the Vcc is irrelevant.

RESET button located under POWER ON/OFF button can generate reset pulse to the target
device. Pressing this button the target devices can be reset manually at any time, starting the target’s
device application program from the beginning.

4.5 Device Action box

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 17

Device Action box contains 8 buttons (see Figure 4.5-1) and — pyauice Action
8 status boxes. Each button allows a specific action to be executed. W e

Software procedures related to each action allow you to fully
[v] AUTO PROG.

execute the desired task, without the need to follow a specific

f actions. E i i h . .
sequence of actions. Every action starts by powering up the target e

device, if Power Device from the Adapter is enabled. The
communication with the target device is initiated via JTAG. The

ERASE FLASH
security fuse is verified, if access to the microcontroller is available.
Once the specified action is completed successfully the green check BLAME CHECE
mark will appear. Also, the device will return to the state it was in
before the action was executed. WHITE FLASH

Progress of all actions is displayed in the report window. If WHRITE 5N ¢ Model

the particular action has been finished successfully, then message

O & K & | & K

‘done’ or ‘OK” will appear on the right side of processed procedure VERIFY FLASH
(Fig.4.5.2). If not, a message ‘failed” will be displayed and selected

. READ / COFY
action will be terminated. Final status is also displayed in the
Status window (see Fig.4.5-3) as Active (blue), Pass (green), or Fail Figure 4.5-1

(red). On the bottom of the programmer dialogue screen the
progress bar is displayed and the total run time is shown in the report window. Run time does not
include the time when user interaction is required.

4.5.1 Auto Program button

Auto Program button is the most frequently used button when programming microcontrollers
in the production process. Auto Program button activates
all required procedures to fully program and verify the flash

Report
-------- DONE - [runtime = 16.7 sec] ~| memory contents. Typically, when flash memory needs to
Reading Code File ..o done i
be erased, Auto Program executes the following

JTAG communication initialization. .. QK

"erifuing Security Fuse ...)4 procedures:

Reading Target Label.................. dane . oy -
Erasing memony done - reload code file when “Reload Code File” is
JTAG communication initialization. .. (]4

&l memary Blank checking............. ok selected

Flazh programming done . .
Writingp sﬂ T 920051 203 A (useful for debugging when the code file is
*erifving check sum ...][4 -

Fieading Targset Label........ : done frequenﬂy mOdlfled)

-------- DOMNE - [runtime= B.7 zec.] L e el g .

= - initialization

Figure 4.5-2 - read labelling information (Serial Number, Model,

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 18

Group, Revision) (optional)
- erase flash memory,
- confirm if memory has been erase,
- flash programming and verification,
- labelling information generation,
- flash memory check sum verification,
- retrieve labelling information,
- blowing the security fuse (if enabled).

— Status
In the report window you can see a typical report message during the Pass
Auto Program procedure (see Fig. 4.5-2). Total | 22
B alance: IT
Status window (see fig. 4.5-3) has a counter that is useful in | SNa¥ e
production process. The total number of programmed microcontrollers can be Figure 4.5-3

entered in the Total edit line. The Balance line shows the number of
microcontrollers that have not been programmed yet. The Balance counter is initialized to the value
entered in the Total edit line and is decremented every time Auto Program is completed successfully.

Note: Balance counter works only with Auto Program procedure.

4.5.2 Verify Security Fuse

This button allows the security fuse to be verified. This is useful, if you try to check if the
security fuse is blown. This procedure is used for test purposes only.

4.5.3 Erase Flash button

This button enables the flash memory segments, or mass (all) memory to be erased. If any
option other then ‘Erase All Memory’ is selected in the Memory Options Setup (see chapter 6.1
Memory Erase/Write/Verify Group for details), then the following question message box will be
displayed:

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 19

| x|

P Wiould wou like ko erase all memory contents?
>/
Please press:
YES - = ko erase all memory conkents.,

MO - = ko erase user defined memoty space.,
CAMCEL -+ ko abort this bask,

Yes I Mo Zancel

Figure 4.5.3-1

4.5.4 Blank Check button

When Blank Check button is clicked, the program checks if flash memory of the target
microcontroller is blank (all bytes contain the value OxFF). This test checks if either all memory is
clean, or just the specified memory segment. The first test checks all memory contents. If it fails,
then just the specified memory segment is checked (see setup in Memory Erase/Write Group). The
following conditions can appear at the completion of this operation:

@ - all memory is blank
- all memory is not blank, but selected part of it is.
|E| - memory is not blank.

4.5.5 Write Flash button

When write flash button is clicked, then contents from the code file will be written to the

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 20

flash memory..

Note: See chapter 5.1 Memory Erase/Write Group for details on how to specify memory segment
for writing.

4.5.6 Verify Flash button

The Verify Flash function compares the contents of the flash memory with data from the code
file. Verify flash function initiated this way will always use the standard memory verification
method, even if the fast verification method is selected from the memory write verification options
(see chapter 5. Memory Option Dialogue Screen).

Check sum calculated from the code file data is displayed in the Source line of the Check
Sum group (see Fig.4.5.6-1), and check sum calculated from the target microcontroller flash memory
data is displayed in the Memory line of this group.

~ Check Sum
Source: | Ox07 /52787

Memory: | 0x07752787 /]

Figure 4.5.6-1

Note: During the verification process either all memory or just the selected part of the memory is
verified, depending on settings specified in the Memory Erase/Write Address Range in the
Memory Options setup. See chapter 5.1 Memory Erase/Write Group for details.

4.5.7 Read/ Copy Flash button

When ‘Read/Copy’ button is clicked, then data can be read from the target microcontroller
and displayed in the Flash Memory Data window (see Fig.4.5.7-1). This window can also be selected
from ‘Flash Memory Data’ from the ‘View’ menu. Flash memory data viewer,

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 21

x
Addr: 00 01 02 03 04 05 0o OF 0g 09 0A OB OC 0D DE OF {——— A=ci11 ———3
0xzD370: BO 12 FA DE 09 3C 07 12 37 40 De C3 BO 12 14 CF | 0o cavacaian :J
0xD380: 08 43 BO 12 GSg D7 37 41 07 57 14 47 44 07 39 40 LW OFAWOGD. 9@
0xD390: 85 C7 38 40 10 00 35 40 10 00 BO 12 FC DE 30 40 S = 1 L= B Qi
0xD3A0: CC CE C2 84 6F 04 C2 93 BE 04 02 34 C2 43 6F 04 S = TN = R T s T
0xzD3B0O: F2 90 05 00 &F 04 03 38 F2 40 05 00 eF 04 BO 12 SR RS e 1 B e R
0xD3C0: 00 CF 37 50 1A C5 48 43 BO 12 56 D? 57 42 6F 04 7P HC. ¥ WBo.
0xD3D0: 07 5% 17 47 DA D3I 30 40 A4C CF 00 10 90 10 830 10 L = 11
0xD3ED: EZ2 F? EE F7 D4 FF 01 02 04 O QCZ 00 BO 12 42 D4 | J5
0xD3F0: F2 43 32 00 E2 C3 29 00 Fz2 C0 80 00 21 00 F2 DO B o lhes cavaa L
0xD400: 80 00 1D 00 03 43 18 3C BO 12 44 D4 F2 43 32 00 | C.g..J. .22,
0xD410: F2 <0 80 00 21 00 Fz2 DO a0 00 1D 00 03 43 0C 3cC RSN e .«
0xD420: BO 12 44 D4 C2 43 32 00 Fz2 DO 80 00 1D 00 03 43 J.oC2. ... C
O0xD430: 03 43 03 43 54 42 30 00 Fz2 C0 80 00 1D 00 Fz2 DO CaETBR s s
0xD440: 80 00 21 00 E2 D3 29 00 30 41 0A 12 34 40 D8 FF ot P T N R e
0xD450: C2 43 32 00 E2 C3 29 00 Fz DO 80 00 1D 00 03 43 C2. .00 C
O0xD4e0: 03 43 03 43 F2 BO 80 00 30 00 F2 0 80 00 1D 0O CoGaan e i 8mE
0xD470: EZ2 D3 29 00 02 24 1A 53 EE 33 3A 41 30 41 F2 43 N RN - 8. - v A P
0xD480: 32 00 E2 C3 29 00 F2 CO0 a0 00 21 00 F2 DO 80 0O 20000 ... N
0=zD490: 1D 00 34 40 32 00 03 43 Fz2 C0 80 00 1D 00 F2 DO T R R S
OxD4A0: B0 00 21 00 E2 D3 29 00 34 E3 1A 53 FE 33 30 41 ooy o 5 304
0xzD4BO: F2 0O 80 00 1D 00 F2 DO a0 00 21 00 E2 D3 29 00 | Sk
0xD4C0: 3A 40 30 75 BO 12 A8 I 34 40 30 75 BO 12 A8 D4 @ow. ... c@0u. . ..
0xzD4D0: 3A 40 30 75 BO 12 A8 D4 34 40 30 75 BO 12 AB D4 @i @0n
0xzD4ED: F2 40 38 00 31 00 BO 12 7E D4 F2 40 0C 00 31 0O mg 1., .~ @, 1.
0xD4F0: BO 12 7E D4 D2 43 31 00 BO 12 7E D4 34 40 10 27 casi g lEili e oo TR
0xzD500: BO 12 A8 D4 F2 40 0Os 00 31 00 B9 3F 44 48 7A FO | @ 1. ?JH=z.
0xzD510: OF 00 78 BO 10 00 02 24 74 DO 40 00 7A DO 80 0O 05 - s R [i
0xD520: C2 44 31 00 &3 3F Fz2 40 38 00 31 00 BO 12 7E D4 Jl . ero@g 1., .~
0xzD530: FZ2 40 O 00 31 00 BO 12 7E D4 F2 40 40 00 31 00 w1 o~ a1
0xzD540: BO 12 EC D3 48 43 D2 48 7E D5 31 00 BO 12 08 D4 o LSR5 Loy G
0xDES50: 58 53 78 90 18 00 F7 2B 2 93 65 04 DA 24 G5B 42 HS=. ... +..=e. . 5XB
0xD5e0: 65 04 C2 48 &5 04 BO 12 0C D5 F2 40 OE 00 31 00 e Helvssss @, .1
0=xD570: 3D 3F C2 43 65 04 F2 40 0C 00 31 00 37 3F 00 10 =7 Ge. @ & F. _J

Conwvert to TI format I Copy | Fa=ste to Nntepadl E=xit

Figure 4.5.7-1

shown in figure 4.5.7-1, displays the code address on the left side, data in hex format in the central

column, the same data in Ascii format in the right column. The contents of the code viewer can be

converted to Texas Instruments *.txt file format by clicking on the ‘Convert to TI format’ button.

Data will be viewed in the Notepad Editor.

Read address range can be specified in the Memory Option screen. See chapter 5.2 Read

group for details. When the ‘Copy’ button is clicked, then the contents of the read target device

memory will be saved in the specified by user file name and opened as a current Code File. Also

programmer setup will be modified for the copy procedure. Especially the serialization will be
disabled and the ‘All Memory’ option will be selected in the ‘Write/Erase/Verify Address Range’.

FET-Pro430 - MSP430 Flash Programmer

PMO0O14A01 Rev.9

Copy Flash B x|

Conktents af the Flash Memary has been saved in the File
E:\MSP-APPL) TrpCodeltest-copy, bxk
and opened as a current Code File,

MNoke:

* The [all Memory] option in [Write/Erase/verify Address Range] has been selected,
* Serialization Feature has been disabled.
* Model/Group/Revision Feature has been disabled.

Please replace the original device with the new device,

Flease press 'O if it is done and then use the standard
buttans like 'BUTOPROGRAM' bo pragrarm the new device,

CIk

Figure 4.5.7-2

Following message will be displayed. When the button ‘OK’ is pressed then programmer is ready
to program the destination microcontrollers.

MEAT [Fa]

Figure 4.6-1

4.6 Next button

|'.-'-‘-.L|TEI PROGRAM —

MEXT [F5)
)))) Figure 4.6-2
The ‘Next’ button is the dynamically programmable device action
button, which is very useful in production process. After opening the FEAD FLASH
program, ‘NEXT" button is disabled (see Fig.4.6-1). When any button
from the Device Action group is pressed, then button ‘NEXT” takes the BERD (P2
name and feature of that button. For example, if Auto Program button
Figure 4.6-3

has been used, then it’s name will be displayed on top of the ‘NEXT’
button (see Fig.4.6-2). From now the button ‘NEXT’ will perform the
same function as the Auto Program button. The ‘NEXT” button has a shortcut to function key F5.
Button ‘NEXT’ will retain its functionality until some other device key is clicked. For example, if
key ‘READ FLASH’ is clicked, then from this moment button ‘NEXT’ will take a name and feature

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 23

of the ‘READ FLASH’ button (see Fig.4.6-3). The read flash procedure will be called, if button
‘NEXT’ or function key FS5 is pressed.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 24

5. Data viewers

Contents data from the Code file and from the Flash memory can be viewed in data viewers.
Also code data and flash memory data can be compared and differences between them can be
displayed.

Contents of the selected file can be viewed by selecting of the ‘Code File Data’ from the
‘View’ menu. Code data viewer, shown in figure 5-1, displays the code address on the left side, data
in hex format in the central column, the same data in Ascii format in the right column. Data in hex
format is displayed from 00 to FF when contents of data exist in the code file, otherwise it is
displayed as double dots °.."(if data does not exist in the code file) . When code size exceeds Flash

x|
Addr: 00 01 02 03 04 D5 06 07 0g 09 0A OB OC OD OE OF ¢——— A=cil ————>
0zE400: 37 50 18 00 08 43 09 47 BOo 12 FA DE 17 42 2C Q& P C.GL L. B ‘:J
0zE410: 07 57 38 40 10 00 C2 93 EF 04 DA 20 14 47 42 05 wam. .. .o, .GE.
OzE420. 35 40 1E 00 39 40 9F C7 B0 12 FC DE 30 40 CC CE f@. . 9@, na.
0=zE430: 14 47 FC 05 35 40 10 00 39 40 AC C7 38 40 10 00 G, 5@, 9@, 8@,
0zE440: BO 12 FC DE 14 47 34 0t 39 40 AC C7 38 40 16 00 | G:. 9@, 8@,
0zE450: 35 40 10 00 E9 3F D2 B3 &F 04 94 20 1A 42 33 05 t@...?. .o.. .B2.
OzE4e0: 34 FO FC FF 14 83 05 4A 15 a2 2C 05 35 FO 3C 00 s e i R
0zE470: 04 20 04 54 04 54 82 54 2C 05 BZ 90 FC 93 2C 05 o b L R
0=zE480: 03 28 B2 40 FC 93 2C 0% 09 44 39 80 00 12 82 99 e oL IR - -
0=E490: 2C 05 0A& 28 19 82 2C 05 39 E3 19 53 B2 40 FC ASG REE AR S
OzE440: 32 05 82 89 32 05 05 3C B2 4h 32 05 92 82 2C 05 T B S B
0zE4B0: 32 05 B2 BO 3C 00 32 0% 0t 20 BZ FO CO FF 32 05 2006020 L2,
OzE4C0: A2 52 32 05 18 42 32 0% 28 FO 3F 00 28 82 34 40 R2.BZ.BY (4@
0zE4D0:. CO FF BO 12 78 E6 4D 28 17 42 32 0% 37 FO FC FF SO, 10 L e = A
0=zE4E0: A2 47 30 01 B2 40 00 80 38 01 03 43 14 42 3C 01 GO @, 8. . CoBe.
0zE4F0: 34 FO FO 3F 34 BO 00 20 02 24 34 DO 00 ED 82 44 4. ..M. . 54, ..D
O=zES00: 50 04 82 44 52 04 34 47 25 47 05 55 04 64 05 5K P. DR 4GxG.T7.4.T
0zES10: 04 54 04 54 84 11 04 G4 04 54 04 54 82 54 52 04 ol T AT T T TR
OzES20: 92 42 52 04 54 04 24 47 o4 11 04 11 04 11 34 FO BRI S 8IE) L
0=zES30: FO 07 34 BO 00 04 02 24 34 DO 00 FC 82 54 54 04 o484 TT.
O=ES540: 92 42 54 04 G5A 04 24 47 04 54 84 11 04 54 04 54 BTN 8GE T TeT
O=zES50: 04 54 82 54 G6 04 17 42 J2 05 37 FO 03 00 07 &7 LTIV, B2.7 .. W
O=zESe0: 14 47 50 04 38 40 10 00 29 40 B3 C7 35 40 10 00 LGP g@, 9@, L@,
OzES70: BB 3F C2 43 bk 04 92 42 ZE 05 2C 05 92 83 2C 05 | B e P = e
0xES80:. B2 90 00 EO0O 2C 05 02 28 B2 43 2C 05 30 A0 FACE | (.C,.o0@. .
0=zES90: B2 90 9E 02 2C 05 03 28 B2 40 9E 02 2C 05 14 42 | f.@.B
0=zESAQ: 36 05 24 82 34 FO FF 01 27 40 06 00 BO 12 4E DE 6.5.4. . 7@, H.
O=zESBO: 82 46 50 04 14 42 36 05 J4 80 00 Ae 34 FO 00 FE FP. . Be.4. . 4. .
OzESCO: 84 10 04 11 82 44 30 01 B2 40 54 00 38 01 92 52 | po. . a@aT. g8 R il
OzESD0O: 34 01 50 04 82 93 50 04 oz 24 92 83 50 04 92 @2 i SR SO)
0=zESEQ: 2C 05 50 04 03 2C B2 &0 F4 02 50 04 14 42 50 04 B B B CBE:
0=ESF0: 37 40 54 00 BO 12 4E DE B2 46 30 01 B2 40 00 02 7@T. . N, FO. @
0=zEe00: 38 01 B2 40 04 A6 32 05 92 52 3A 01 32 05 82 4% g..@ 2. R:.2 E _J
Convert to TI format I Paste to Hotepad Exit |
Figure 5-1

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 25

memory space of the selected microcontroller, then warning message

‘:== Data out of the Flash Memory Space of the selected MSP430. ==’

is displayed first.
The contents of the code viewer can be converted to Texas Instruments *.txt file format by
clicking on the ‘Convert to TI format’ button. Data will be viewed in the Notepad Editor.

Contents of the Flash Memory data can be viewed by selecting of the ‘Flash Memory Data’
from the ‘View’ menu. Flash Memory data viewer displays the memory address, data in hex and
Ascii format in the same way as the code data viewer (Figure 5-1 and 4.6.7-1). To be able to see
Flash Memory contents, ‘Read Flash’ option must be selected first.

Contents of the Code File data and Flash Memory Data can be compared and differences

Comparation Code and Flash Memory Data T X|

Addr: 00 01 02 03 04 05 08 OF 08 09 0A OB 0OC 0D OE OF {——— Ascii ————3

============ Data Result Comparation. ============= :J

== Only data from the code file that does not match==

== with the Flash Memory data i= di=splayed. ==

== Extra data from the Flash Hemorvy i= ignored. ==

First Line - Data from the Code File.
Second Line — Data from the Flash Memory.
OFCAB0EE G vrae e s won swelBBL un O R B
OxC480: o5 A5 R B BR AheeE H B i B B B B B e | BRERRER SRR R
0xCECO: L L. L. Ao . o e
0=E8CE0: =0 25 25 2o 5@ 250 55 69 s s do so poogo se | sosssas Tizmsse
OzCBCO: 44 N [T Do ..
("1 = o HECEE o S = T R ORRD BT RN RN RN R R e VAG T
OB s i min mi s s mpsdd SRDORE RE BRORR RE s oaw | snmmas Dy
DEDTROE s s e oo s s seodd D e
D=xDADD: 0 s s me me sw ge 5033 s omE g sw ose s ose | ssssas e
BEDADD T o s siss sy s s suse LU e e G S S S G e [T s s
0zD?E0: DE mE e mR R o omn rm onm |7 meoosmesmessew
0zxD?EO0: DF [
DEDBI0E s st P00 sen s svsh sy s S WIS SRR GDAT NNSR SUEh SRS S [h vl s S
ozpEB3IO: 08 S
BEELEDT: oo cwbfmy cun sw sws s s O LY. - T
0xE150: 03 e
Fa=zte to Hotepad I Exit |

Figure 5-2

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 26

displayed in a the viewer by selecting ‘Compare Code & Flash Data’ from the ‘View’ menu. Only
data that are not the same in the code file data and the Flash memory will be displayed. In the first
line code file data will be displayed, and in the second line - Flash memory data (Figure 5-2).

Note: Only data at the addresses specified in the code file can be displayed. Any data not specified
in code file will not be displayed, even if the Flash Memory data contains any not empty (FF) data.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 27

6. Memory Option Dialogue Screen

The Memory Options Dialogue Screen (Fig.6-1) has three settings groups and one
information group. Two of the settings groups allow the flash memory addresses range for erase,
write and read operation to be specified. The third settings group, write verification, allows the user
to select the verification method for Auto Program procedure. The information group contains the
start and stop address of the user specified main memory segment that can be erased, written and

verified independently.

Memory Options i

—Memary Eraseitfrite/verify Address Range
" Update only ~Information Memary Segments —
(without BSL sectors) [T -D [0x1000 - 0x103F]
[T -C [0x1040- 0x107F]
[T -B [0x1080 - 0x10EF]
- A [0x10C0 - 0x10FF]

e all Mamary
fwithout B5L seckorsy
Bl including locked [

IMFC-4 segment

—Main Memoty
™ Enatilz

Start Address: IDxllDEI
Stop Address: ngq SRR

€ Main Memory only

" Used by Code Fils ~B5L Flash Segments (FSxx, Food) —

(imcluding selected BaLT [
r
" User defined e
-

—Retain Data in Flash {Autoprogram and Erase)
W DCO constants in IMFO-A ¢ 0x10FS - Ox10FF)

{ MSP430F 2 anly)
Start Address (even): I 1000

Stop Address (odd): I w1000

[User defined
{max 256 bytes)

— DCO constants wverification in location 0x10F8 bo 0x10FF —

Read Address Range

e al Memary r—Information Memory Segments
fincluding selecked BSL) [T -D [01000- 0x103F]
[T -C [0x1040 - 0x107F]
[T -B [0x1080 - 0x10EF]
" MainMemory anly | = _ 4 {0,100 - 0x10FF]

—Main Memary
[Enable

Skart Address: I Ox1100

Stop Address: x4 7FFF

€ Infa Memory anly

—B3L Flash Segments (FS:, Fexx) —

" User defined

ik i

—Mrite Verification
* Fast W'rite,Yerify + Check Sum) [Recommended]

" standard {Write, Yerify + Check Sum + Read, Verify)
€ Mone

~About Microcontroller

MSP430F 2% and Auktoprogram only = elected Main Mernaty Start Addr: 0:8000
v i I i .
V¥ Check DCO constants § 0x0000 or 0xFFFF are invalid) Microcontraller: Misirs Memory Stop Adde: 0xFFEF
(obandeee 7t RAM Size i Bytes: 1024
carel_|
Figure 6-1
FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 28

6.1

Memory Erase/Write/Verify Group

The Memory Erase/Write/Verify Address Range group block (see Fig.6-1) specifies common

addresses range for erase, write and verify operations. Memory setup has five available options:

Note:

Update only:

When this option is selected the Auto Program @1008
procedure will not erase memory contents. Instead | 55 CcA 80 40 39 E3 F8 02
Contents of the code data taken from the Code File | @2200

will be downloaded to the flash memory. This option | 48 3559 72 AC B3

is useful when a relatively small amount of data, such | 9

as calibration data, needs to be added to the flash Figure 6.2
memory. Flash memory space defined by Code File

should be blank. Code file should contain ONLY data, which will be downloaded to flash
memory. For example, if code file contains only data as shown in figure 6.2 (in Texas
Instruments format) then 8 bytes of data will be written starting at location 0x1008 and 6
bytes of data starting at location 0x2200. Before writing operation, all data in the flash
memory at the specified location should be blank (contain value OxFF). The software will
verify automatically if this part of memory is blank and will only proceed to program the

device if verification is successful.

Addpresses in the Code File should contain only EVEN addresses. Number of bytes in all data
blocks must be even. The software uses word (two bytes) operation for writing and reading
data. In case that the code file contains an odd number of bytes to write the data segment
will be appended by a single byte containing the value OxFF. This value will not overwrite
the current memory contents, but verification process will return an error if the target device
does not contain the value OxFF at that location.

All Memory

This is the most frequently used option during flash memory programming process. All
memory is erased before programming. All contents from the code file are downloaded to
the target microcontroller’s flash memory.

Main memory only
This option allows to erase and program the main memory only. Flash information memory
(segments A and B) will not be modified. Contents of the information memory from the code

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 29

file will be ignored, if code file contains such data.

4. Used by code file:

This option allows main memory segments or/and information memory segments, used by
data specified in code file, to be erased. Flash memory segments, which do not contain any
data to be written to the memory from the code file, will not be erased. This option is useful,
if some data, like calibration data, should pe replaced in memory. If code file contains some
new calibration data, such as described in figure 6.1-1, then the ENTIRE information
memory segment at addresses 0x1000 to Ox107F and main memory segment at addresses
0x2200 to 0x23FF will be erased and new data at locations 0x1008 and 0x2200 will be
written.

5. User Defined:

This option is functionally similar to options described before, but addresses range of the
erased/write/verify main memory and sectors of the information memory can be defined by
the user. When the User Defined option is selected, then on the right side of the Memory
Erase/Write/Verify Group two check boxes and two addresses edit lines will be enabled. The
check boxes allow the user to select the information memory sectors A, or/and B to be used
(erased, write, verified). Edit lines in the Main Memory group allow the user to specify the
main memory address range (start and stop addresses). Start address should specify the first
byte in the segment, and the stop address should specify the last byte in the segment. Since
the main memory segment size is 0x200, then the start address should be a multiple of
0x200, eg. 0x2200. The stop address should specify the last byte of the segment to be written.
Therefore, it should be greater than the start address and point to a byte that immediately
precedes a memory segment boundary, eg. 0x23FF or 0x55FF.

6. Retain Data in Flash Group:

The MSP430F2xx series has the DCO calibration data saved in the INFO memory at
addresses Ox10F8 to Ox10FF. However, when the info segment is erased, then the DCO
calibration data can be erased also. When the DCO Calibration Data box is selected in the
Retain Data in Flash group, Autoprogram button is pressed and the MSP430F2xx
microcontroller is selected, then contents of the info memory at location 0x10F8 to Ox10FF
is read, whole action is performed (erase, blank check, program) and contents of the original
DCO data (info at location 0x10F8 to Ox 10FF) are restored.

User defined option in the Retain Data in Flash group allows to specify other region to be
restored after erase, program and verification. This option can be used with any MSP430

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 30

6.2

microcontroller type. Location of the retain data block is not limited and can be used any part
of flash - info or main memory. Maximum size of the retain data block is limited to 256 bytes
only.

Read Group

The Read Address Range group block (see Fig.6-1) specifies the address range used in

reading process. Memory read setup has four available options:

1.

2
3.
4

All Memory

Main memory only
Info memory only
User Defined

The meaning of each option is the same as for the erase/write/verify procedure. The Info Memory

only option works the same way as Main memory only option described above, except that only

information memory is modified.

6.3

Verification Group

Verification group setup allows the user to select one of the three write verification methods:
Fast Verification,

Standard Verification,

None.

Fast Verification:
Fast verification method is performed using a pseudo signature analysis (PSA) algorithm.

Standard verification:

Standard verification is performed after memory write process is completed. Contents of the
flash memory are read and compared with the contents of the code file. If both data are the
same, then verification process is finished successfully. Typically, the standard verification
procedure requires the same amount of time as read/write procedure. Total programming
time with standard verification is around two times longer than read/write procedure time.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 31

6.4 Write/Read the BSL Flash sectors in the F5xx/F6xx MCUs

The MSP430F5xx and MSP430F6xx microcontrollers have the BSL firmware saved in the
Flash Memory sectors. By default, access to these sectors (Read/Write) is blocked, however it is
possible to modify the BSL firmware if required - that allows to download the newer or custom
defined BSL firmware. These BSL sectors are located in the memory space 0x1000 to Ox17FF. The
FlashPro430 software allows to modify these sectors using the same method accessing the BSL
memory sectors as all other memory sectors. However - to avoid unintentional erasing the BSL
sectors the most used memory option - All memory - has blocked access to the BSL sectors. Access

Memory Options NN . X|

—Memory Erase/Write/Verify Address Range ~Rgad Address Range

' Update onky Information Memory Segments — | Mernory — Information Memory Segments
(without BSL sectors) [T -D [0%1500 - 0x187F] ding selected B5L) [T -D [0x1800 - 0x187F]
[T -C [0x1880 - 0x15FF] [T -C [0x1880 - Dx15FF]
Al Memary -
ithioi 5L Sectors) -B [0x1900 - 0x197F] o [T -B [0x1900 - Dx197F]
r— including lacked [T -4 [0x1980 - Ox19FF] Main Memary anly ™ -A [0x1980 - Ox19FF]
IMEO-6 segrent - -
Main Memary Main Memoary
[~ Enable ™ Enable
i i Start Add ! Ox1100 : 0x1100
Main Merniory anly At Fess I I3 £ Vinbo Meriory ke Start Address: I %
Stop Address: IEIx4?FFF Stop Address: Ile4?FFF
A= F_ 9
sed by Code File SL¥lash Segments (FSuce, Faxx) — —#5L §lash Segments (FSuxx, Foxxe) —
fuding selected BSLY | W |es1-0 ¢0x1000-0x1 1FF) V¥ B5L-0 (0x1000-0x1 LFF)
ser defined
IV B5L-1 (0%1200-0x13FF) V¥ HoL-1 (0x1200-0x13FF)
i -2 (0 - -2 (0 -0
ser defined [¥ B5L-2 (0x1400-0x15FF) ¥ B5L-2 (0x1400-0%15FF)
IV E5L-3 (0x1600-0x17FF) v fi5L-3 (0x1600-0:17FF)
=4
—Retain Datain Flash (Autoprogram and Erase) ——— —WWrite Merification

2 canstants im IHEC-a FE - 0xl0FE) : :
| E'O SRR Rl O e St 2R % Fast {write, verify + Check Sum) [Recommended]

MSP430EE only

" Standard (Write,Verify + Check Sum + Read, Verif
[User defined Start Address (even: | Di= 1000 (S /e
(max 256 bytes) Stop Address (odd): [1000 " None
—DCO constants verification in location 0x10F8 to Ox10FF —— - About Microcontroller i 4400
MSP430F2xx and Autoprogram only Selocted Main Memory Start Addr:
¥ check Do constants { 00000 o O2FERF areinvalid) Microcontrallat:

fain Memory Stop Addr: D0x243FF

MSP430FS529
RAM Size in Bytes: 10240

Ly |

Figure 6.3

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 32

to BSL sectors is unlocked only when the Used by Code file or Used defined option is selected and
desired selected BSL sectors are enabled (see Figure 6.3). Contents of the BSL sectors can be read
when All memory or Used defined and desired BSL sectors are selected.

When the code file is read with code contents in the BSL sectors and the BSL sectors are not
selected in the memory option ,then the following warning message will be displayed (Figure 6.4).

warning NN x|
Code is located in the BSL sectors,
! however the BSL sectors are nok selected,
Check the Memory Options setup,

Excess data will be ignored.

k.

Figure 6.4

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 33

7. Target’s Connection - Reset Options

7.1 Communication with Target Device

Target's Connection / Reset Options

x|
— Communication with Target Device i |

" IT8G { 4 wires

™ Spy Bi Wire (2 wires) {do not supported by Parallel Pork FET)
Cancel

Reset Options —COM Park
" any [Recommended] + USE--= FOMS
™ PUC orly = LPT-1 fibornatic
" RSTINMI only " LPT-2
™ Yoo OFFfOn anly " LET-3

—Final Target Device ackion

@ Switch oo OFF Toidentify a connection, click a port in

the list to see the Mode LED on the

™ Reset and start the application progran attached UIF light up.

~Used Adapter
¥ TI's FET, USE-FET or hardware compatible - uses TI's M5P430.dl library,

" Other-1 i‘ |
C otherz ==| |

Browse full path and name of the MSP430.dl file supplied with the adapter wou have.

Figure 7-1

Communication with the target devices can be selected in the Target’s Connection dialogue screen
(Figure 7.1). Most of the microcontrollers MSP430Fxx have only standard JTAG communication
interface. In this case the “Standard JTAG” selection should be used. The latest MSP430F2xx
microcontrollers with small packages have the Spy Bi Wire (2 wires only) interface, or 4 wires
JTAG combined with Spy Bi wire Interface. In this case the 2/4 wire JTAG or Spy Bi Wire can be
selected. Before selecting non standard JTAG communication interface make sure that your FET is

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 34

supporting selected communication interface. The non standard communication interface is by the
Texas Instruments USB-FET (MSP-FET430UIF) with the latest firmware (released in Oct.2005 and
later) . Ask TI for firmware upgrade if the USB-FET you have has an older firmware.

7.2 Reset Options

The Target’s Reset Options screen (figure 7-1) enables the user to select the following Reset method.

- PUC Reset - The device is reset using PUC (i.e. a “soft” reset)
- RST Reset - The device is reset using RST/NMI pin ((i.e. a “hard” reset)
- Vce Reset - The device is reset by cycling power to the device.

Reset Option selector allows to use one of described above reset method (PUC only, RST only, Vcc
only), or Any. If Any option is selected, then at the first the PUC reset is executed. If failed, then
RST medhod is used. If still failed then cycling Vcc reset option is executed.

7.3 Final Target Device action

Every device action, like AUTO Program, Read etc. starts with the activation of the RESET line
(active low). When the device programming action begins the RESET line is raised high. When
device action is finished, then RESET line is again asserted, protecting the target device from
running the application program. This method is commonly used to protect the programming adapter
from the DC overload. However, when target device is supplied from its own power supply, or a
battery, the overload protection of the programming adapter is no longer necessary.

The target device can be set to run an application immediately after the target device
programmed. In order to do this check the ‘Reset and start the application program’ option in the
Reset Options window, shown in Figure 7-1.

7.4 Connection

Connection selector allows to select desired communication port with programming adapter
(FET). Communication port is selected by MSP430.dll driver during initialization process and
parameters passed to the MSP430.dll. Following string is passed to initialization MSP430
procedure.
“LPT1" when LPT 1 is selected,
“LPT2" when LPT 2 is selected,
“LPT3" when LPT 3 is selected,
“USB" when TI USB is selected.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 35

7.5 Used Adapter

The FET-Pro430 software is using TI’s MSP430.dll library that allows communication with

Texas Instruments FET (parallel port FET or USB-FET). However the FET-Pro430 can also be used

with the Third’s Party Tool adapters. If other then the TI's adapter is used then the correct

MSP430.dll library between FET-Pro430 software and used adapter must be used. In the Used

Adapter group (Figure 7.1) should be selected option

TI’s FET
- when the TI’s FET (parallel port FET or USB-FET) is used , or parallel port FET with
hardware compatible to the TI’s FET.
or Other-1
or Other-2
- when the Third Party Tool adapter is used (usually USB model). In this case the MSP430.dll file
location with full path should be selected using browse (>>) button.

Note: Usually the FET drivers supplied by Third Party Tool supplier has name - MSP430.dll Do
not copy the Third Party Tool MSP430.dll file to the location where the current TI's
MSPA430.dll file is located and by mistake do not overwrite this file. Using browse (>>)
button select full path of the desired MSP430.dll file without moving it from original location
to location where the TI's MSP430.dll file is saved.

7.6 Preferences Dialogue Box

In the Preference Dialogue screen is possible to specify an external tools location and define
a preferable audio tones during programming.

In the first edit line it can be specified the pdf Reader file name. By default it is used the
Acrobat Reader AcroRd32.exe file. However it is possible to change the pdf Reader if required in
the PDF Reader edit line. Using the Browse.. button please select location of the pdf Reader
executable file.

In the second edit line it should be specified location of the Texas Instruments’ hex
conversion utility file - hex430.exe. This tool is used to convert the *.out file generated by the Code
Composer Essentials debugger to the Intel.hex file when the Open Code option I used and selected
the TT’s CCE (*.out) file. The hex430.exe file is supplied with the TI’s Code Composer Essentials
debugger and by default is located in directory

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 36

Preferences . x|

— PDF Reader

AcroRd3Z exe Browse, , |

— TI HEX Conversion Llity - hex430,exe
Default location in CCE -
Program Filesi Texas InstrumentsiCC Essentials 3. 11tools\compileriMSP430ibinthex430, exe

Ci\Program Files! Texas InstrumentsiiCiC Essentials +3, 11 toolsicompileriMSP430binthex: Browse.. |

—options., .
¥ Report History Display Enable

~Audio
—PC Speaket
[™ Enable [” Beep when OK Enable
~Sound
V¥ Enable
Done [OF sound
I W INDOYW S Medial windows kP Balloon.way | Play I Browse, , |

Warming sound
IC:'I,WINDOWS'I,MEdia'I,WindDws %P Exclamation, way Flay | Browse., |

Error sound
I CHWINDOWS Medialwindows XP Battery Low,way Flay: | Browse, , |

Zancel | 2, |

Figure 7.2

C:\Program Files\Texas Instruments\CC Essentials v3.1\tools\compiler\MSP430\bin

The FlashPro430 uses following keys when the *.out file is converted to *.hex file

hex430.exe -romwidth=8 -memwidth=8 -i -o=file_name.hex input_file.out

If the TI’s CCE (*.out) option is used and the hex430.exe file cannot be found, then following
message is displayed (Figure 7.3).

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 37

Error - hexd30.exe file not found x|

@ Open File Errar:

C:iProgram Files) Texas InstrumentstiZC Essentials «3. 1ikoolsicompileriMaP430%binthexd 30, exe

The hex430.exe utility file allows to conwvert the *,out file ko Inkel * hex Format,

Fraom the pull-down menu please select the Setup-=Preferences

and in the 'TI HEX Conversion Lklicy' group enter the location of the hexd430, exe ukility File,
By defaulk the hex430,exe file is located in the Code Composer Essentials directory.

Ik

Figure 7.3

Using the Browse.. button in the Preferences Dialogue screen the new location of the hex430.exe
file should be specified.

In the Option group the report history in the report window (see figure 4.1) can be enabled
or disabled . When enabled then the report history is displayed up to 8 kB characters (approximately
20 last communication messages). When disabled, then the only last programming report is
displayed.

Programming software can generate audio tones when error programming occurred or tone
ok at the end of programming. Tone can be generated using PC speaker or audio wave generator.
Option dialogue box allows to select desired audio option (see Figure 7.2).

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 38

8. Serialization

8.1 Introduction

FlashPro430 programming software has ability to automatically create the target device’s
serial number and save it in the flash memory. The serial number (SN) that have already been used
are stored in the data file. The new SN is created by incrementing a counter that for the SN and the
highest SN is stored in a data file. Furthermore, model name, group, revision can be downloaded to
target device.

Note: The SN format and location in the device’s flash memory must be specify by the user.

Serial number is created, when Auto Program or Write SN button is pressed and the Serial
Number feature is enabled. When Auto Program function is activated the SN is programmed to the
target’s device memory at the same time along with code data. If Auto Program fails for any reason
then new SN is not created.

The software also allows the microcontroller to retain its SN if one has already been assigned
to it. Every time a device is programmed and serialization is enabled the contents of the target’s
memory are scanned for existing serial number. If the serial number is found the message in figure
8.1-1 will appear and allow you to decide if you wish to keep the old serial number, new serial
number or serial number modified manually.

Serial Number Editor =] =]

- Serialization VERIFY vith Data Base |
Targets SN & | 123456
MewSN ¢ | 242211
Edited SH I 2a221 14 Camecl |

Format; Asci Cuztom

— Model, Group, Revizion

|-01 F.0003-04-17

Target's Model, Group, Rev. etc.
|-01 F.0003-04-17

Figure 8.1-1

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 39

8.2 Serialization Dialogue Screen

Serialization dialogue box, shown in figure 8-2, allows configuration for serialization process
to be set. Serialization can be enabled, or disabled, by selecting the check mark in the ENABLE
Serialization box. When serialization is disabled all edit lines and check boxes are disabled. When
serialization is enabled all fields must be set.

Serialization L x|

— Serialization Setup

¥ EMAELE Serialization

¥ Pemove code conkents in the location where the serialization and model. . are defined

Setial Mumbers' File Path and Mame:

I Z:\ElprotronichProjecty Cpp-Met | USE-MSP430Prgldata_mem.sn Browse,,
—BarCode Scanner
I EMABLE Terminator Character ICR vl
[T Start AUTOPROGRAN following BarCode scan
— Serial Mumber Format — Memoty Locakion
—Display Formak ——— [In Memory Format
SM Start Address in Memory;
(% YY-1234(5) ™ HEX (M5B First) !
O YYMMDD-1234 " HEX (M34 First) I
" YYDDD-1234(5) ~ :
HE™ LS/ LSE Fit<k rrnust be even address)
" 12345678 Ll !
123405 {* BCD
™ Cusktom ;
char - = Lsed size: 4 bytes
" fromFile | * (4..256) Ll

Setial Mumber 330

warm i Device's Flash {date excluded) starting From:;

v Mernory is mok empky
on the Sk location

Serial Murmber Increment:; 1
—Model | Group | Revision
¥ EMNABLE Text size in Bytes: I? (2..32) (even number)
Skart Address in Memorsy: I 0x1010 (musk be even address)
| asci - | | 01 7ADL4%02-rews 16 bytes

Ok | Cancel |

Figure 8-2

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 40

8.2.1 Serial number File

The ‘Serial Number File Path and Name’ specifies the full path and file name, where data
base contents will be saved. Serial Number file contains following data, separated by tabulation:

1. Serial Number Format (FO,F1,F2,F3,F4 F5,F6),
2. Serial Number,
3. SN action type (New SN, unmodified SN, overwritten SN, manual SN)
4. Time and date, when SN has been created,
5. Code File Name
6. Model text.
Below is an example of data file, containing data from the three consecutively created serial
numbers.

FO 200300011 m (Sat, Mar 29,2003, 10:09) AS010X02-1v2.txt -01 R.0003-04-17
FO 200300012 . (Sat, Mar 29,2003, 10:43) AS010X02-1v2.txt -01 R.0003-04-17
FO 200300013 u (Sat, Mar 29,2003, 10:43) AS010X02-1v2.txt -01 R.0003-04-17

Serial number can be created as a unique SN per target’s device type, or as a unique SN in
any devices type. When unique SN per target device type is created, then serial number file name
and path should be used for each device type separately. If a unique SN for any devices type is
created, then only one serial number file name should be used.

8.2.2 Serial number formats

Programming software has seven methods for creating the serial number, referred to as
Display format, and four methods of storing the SN in the memory, referred to as In Memory
Format in the serialization dialogue screen. When a serial number is created, current date (if
required) is taken from the PC timer. Make a sure, that your computer has correct date and time.

Display Format:
1.YYYY-1234(5) -(SN Format - F0) Serial number has 8 or 9 characters. First four
characters contain current year, and remaining 4 or 5 characters
contain the serial number, eg. SN 20030123 or 200300123 has a
number 0123 (or 00123) created in the 2003 year.
2. YYMM-1234(5) - (SN Format - F1) Serial number has 8 or 9 characters. First two

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 41

characters contain last two digits of current year, next two characters
contains current month, and remaining 4 or 5 characters contain a
number, eg. SN 03030123.

3.YYMMDD-1234 - (SN Format - F5) Serial number has 10. First six characters contain
date (year, month, day of month) and remaining 4 characters contain
a number, eg. 0405120123.

4. YYDDD-1234(5) - (SN Format - F4) Serial number has 9 or 10. First five characters
contain date (year, day of year from 1 to 366) and remaining 4 or 5
characters contain a number, eg. 041230123.

5. 123456768 - (SN Format - F2) 8 digits serial number without date stamp.
6. 1234(5) - (SN Format - F3) 4 or 5 digits serial number without date stamp.
7. Custom - (SN Format - F6) 4 to 16 Ascii characters or hexadecimal numbers

entered manually or from the Bar-Code Reader.
8. From the file - (SN Format - F7) 4 to 16 Ascii characters or hexadecimal numbers
taken from the user created file.

Serials numbers format 1 to 6 can be stored in memory in HEX, BCD or Ascii format. These
formats accept only numeric characters from 0 to 9. All numbers are displayed in the decimal format,
regardless of the format HEX, BCD, Ascii used in the target memory.

Custom and from the file serial number can be stored in Ascii or HEX format.

8.2.2.1 HEX (MSW first) and HEX (LSW first) format

When hex format is selected, then all SN display formats described above can be stored as
a one or two integer (16-bits - 2 bytes) numbers. First four display characters will be saved as one
hex integer number and remaining five characters will be saved as a second hex integer number.
When format HEX(MSW first) is selected then the first hex integer number is saved as a first word
and the second number - as a next word in the Flash memory location.
When format HEX(LSW first) is selected then the first hex integer number is saved as a second
word and the second number - as a first word in the Flash memory location.

Display Format: YYYY-1234(5) - size in FLASH - 4 bytes
SN 200300123 will be saved as
YYYY -2003 (Decy) -> 0x07D3 (hex)
12345 - 00123 -> 0x007B (hex)

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 42

In flash memory this number can be seen as
07D3 007B -> HEX(MSW first)
007B 07D3 -> HEX(LSW first)

when integer numbers are viewed, or as
<--- Hex format bytes---> (Size - 4 bytes)
D3 07 7B 00 -> HEX(MSW first)
7B 00 D3 07 -> HEX(LSW first)

when bytes are viewed (first byte is the LSW byte from the integer number)

Displayed consecutive serial number (16-bits integer number) can have a value from O to
(2716-1) equal 65535 and is displayed as the 5 digits serial number.

Display Format: YYMM-1234(5) - size in FLASH - 4 bytes
SN 030300123 will be saved as
YYMM -0303 (Decy) -> 0x012F (hex)
12345 - 00123 -> 0x007B (hex)

In flash memory this number can be seen as

012F 007B -> HEX(MSW first)
007B OI2F -> HEX(LSW first)
or
<--- Hex format bytes---> (Size - 4 bytes)
2F 01 7B 00 -> HEX(MSW first)
7B 00 2F 01 -> HEX(LSW first)
Display Format: YYMMDD-1234 - size in FLASH - 4 bytes

The format date is compressed to be able to fit data in only in two bytes as follows:

Bit 1514131211109 8 76543210
<---(year-2000)----> < month><— day -->
SN 0405110123 will be saved as
YYMMDD - 040511 (Decy) -> 0x08AB (hex)
1234 - 0123 -> 0x007B (hex)
In flash memory this number can be seen as

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 43

08AB 007B -> HEX(MSW first)
007B 08AB -> HEX(LSW first)

or
<--- Hex format bytes---> (Size - 4 bytes)

AB 08 7B 00 -> HEX(MSW first)
7B 00 AB 08 -> HEX(LSW first)
Display Format: YYDDD-1234 - size in FLASH - 4 bytes

The format date is compressed to be able to fit data only in two bytes as follows:

Bit 1514131211109 8 76543210
<---(year-2000)----> < —- day of year --->
SN 041110123 will be saved as
YYDDD - 04111 (Decy) -> 0x086F (hex)
1234 - 0123 -> 0x007B (hex)

In flash memory this number can be seen as

086F 007B -> HEX(MSW first)
007B 086F -> HEX(LSW first)
or
<--- Hex format bytes---> (Size - 4 bytes)
6F 08 7B 00 -> HEX(MSW first)
7B 00 6F 08 -> HEX(LSW first)
Display Format: 123456768 - size in FLASH - 4 bytes

SN 12345678 will be saved as
12345678 (Decy) -> 0x00BC614E (hex)

In flash memory this number can be seen as
00BC 614E -> HEX(MSW first)
614E 00BC -> HEX(MSW first)
or
<--- Hex format bytes---> (Size - 4 bytes)
00 BC 4E 61 -> HEX(MSW first)

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9

4E 61 00 BC -> HEX(LSW first)

Display Format: 1234(5) - size in FLASH - 2 bytes
SN 12345 will be saved as
12345 (Decy) ---> 0x3039 (hex)

In flash memory this number can be seen as
3039 (integer numbers) -> HEX(MSW first) or HEX(LSW first)
or
<--- Hex format bytes---> (Size - 2 bytes)
39 30 (bytes) -> HEX(MSW first) or HEX(LSW first)

Display Format: Custom - size in FLASH - defined size divided by 2
Entered manually or read via Bar Code Scanner hexadecimal number is converted to HEX
format and saved in flash memory in order related to MSW or LSW first selection.
E.g. entered hexadecimal number
02A569C1
will be seen as
02 A569C1 -> HEX (MSW first)
or
C169A502 -> HEX (LSW first)

8.2.2.2 BCD format

When BCD format is selected, then all SN display formats described above can be stored as
a two or four separate bytes converted to BCD format, where first and last four bits of 8 bit byte
contains a value from 0 to 9. All consecutive serial number characters are converted to half byte
each. Finally two consecutive serial number characters will be converted to a single byte.

Display Format: YYYY-1234 - size in FLASH - 4 bytes
SN 20030123 will be saved as

YYYY - 2003 -> 0x20 0x03 (bytes)
1234 - 0123 -> 0x01 0x23 (bytes)

When flash memory bytes are viewed, then this number can be seen as

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 45

<--- Hex format bytes--->
20030123 (Size - 4 bytes)

The consecutive serial number (4 bytes BCD) can have a value from 0 to 9999 and is

displayed as the 4 digit serial number.

Display Format: YYMM-1234 - size in FLASH - 4 bytes
SN 03030123 will be saved as
YYMM - 0303 -> 0x03 0x03 (bytes)
1234 -0123 > 0x01 0x23 (bytes)

In flash memory this number can be seen as

<--- Hex format bytes--->

03 03 01 23 (Size - 4 bytes)
Display Format: YYMMDD-1234 - size in FLASH - 5 bytes
SN 0405110123 will be saved as
YYMMDD - 040511 -> 0x04 0x05 Ox11
1234 -0123 -> 0x01 0x23

In flash memory this number can be seen as
<--- Hex format bytes--->
04 05110123 (Size - 5 bytes)
Display Format: YYDDD-1234 - size in FLASH - 4 bytes
The format date is compressed to be able to fit data only in two bytes as follows:

Bit 15...12 - Year number - multiple of ones (9,8,...1,0)
11,10 - Year number - multiple of tens (3,2,1,0)

9,8 - Day number - multiple of hundreds (3,2,1,0)
7.4 - Day number - multiple of tens (9,8,...1,0)
3..0 - Day number - multiple of ones (9,8,...1,0)

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 46

SN 041110123 will be saved as
YYDDD - 04111 (Decy) > 0x41 Ox11 (hex)

1234 - 0123 > 0x01 0x23 (hex)
Display Format: 123456768 - size in FLASH - 4 bytes
SN 12345678 will be saved as
12345678 -> 0x12 0x34 0x56 0x78 (bytes)

In flash memory this number can be seen as

<--- Hex format bytes--->

12 34 56 78 (Size - 4 bytes)
Display Format: 1234 - size in FLASH - 2 bytes
SN 1234 will be saved as
1234 -=> 0x12 0x34 (bytes)

In flash memory this number can be seen as

<--- Hex format bytes--->
12 34 (Size - 2 bytes)

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9

47

8.2.2.3 ASCII format

When Ascii format is selected, then all SN display formats described above can be stored as
a four or eight separate bytes converted to Ascii characters. All consecutive serial number characters

are converted to Ascii characters.

Display Format: YYYY-1234 - size in FLASH - 8 bytes
SN 20030123 will be saved as
YYYY -2003 -> 0x32 0x30 0x30 0x33 (bytes)
or 20 0 3
1234 -0123 -> 0x30 0x31 0x32 0x33 (bytes)

Or 60! 61! 62' ‘3'

When flash memory bytes are viewed, then this number can be seen as

<------ Hex format ------ > <— Ascii format —>
32 30 30 33303132 33 20030123 (Size - 8 bytes)
Display Format: YYMM-1234 - size in FLASH - 8 bytes
SN 03030123 will be saved as
YYMM - 0303 -> 0x30 0x33 0x30 0x33 (bytes)
or ‘0 3 0 3
1234 -0123 -=> 0x30 0x31 0x32 0x33 (bytes)

Or 60! 3 1! 42' 43'
In flash memory this number can be seen as

<------ Hex format ------ > <— Ascii format —>
30 33 30 33303132 33 03030123 (Size - 8 bytes)
Display Format: YYMMDD-1234 - size in FLASH - 10 bytes

SN 0405110123 will be saved as

YYMMDD - 040511 -> 0x30 0x34 0x30 0x35 0x31 0x31 (bytes)
Or (0' 64V (0' (5' (1' 61V
1234 -0123 -=> 0x30 0x31 0x32 0x33 (bytes)

Or 60! 3 1! 42' 43'
In flash memory this number can be seen as

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 48

P — Hex format ---------- > <— Ascii format —
30 34 30 3531 31 30 313233 0405110123 (Size - 10 bytes)

Display Format: YYDDD-1234 - size in FLASH - 9 bytes
SN 042140123 will be saved as

YYDDD - 04214 -> 0x30 0x34 0x32 0x31 0x34 (bytes)
Or (0' 64V (2' (1' (4'
1234 -0123 -=> 0x30 0x31 0x32 0x33 (bytes)

Or 60! 61! 62' ‘3'

In flash memory this number can be seen as

<L Hex format ---------- > <— Ascii format —>
30 34 32 3134 30 313233 042140123 (Size - 9 bytes)
Display Format: 123456768 - size in FLASH - 8 bytes

SN 12345678 will be saved as

12345678 -> 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 (bytes)

In flash memory this number can be seen as

R mn—— Hex format ------ > <— Ascii format —
31 32 33 34353637 38 12345678 (Size - 8 bytes)
Display Format: 1234 - size in FLASH - 4 bytes
SN 1234 will be saved as
1234 -> 0x31 0x32 0x33 0x34 (bytes)

In flash memory this number can be seen as

<--mme- Hex format ------ > <— Ascii format —>
31 32 33 34 1234 (Size - 4 bytes)
Display Format: Custom - size in FLASH - defined size in bytes

Entered manually or read via Bar Code Scanner ascii sring will be saved in flash memory

‘“as is”. E.g. entered hexadecimal number

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 49

02WX24S234
will be seen as
30325758323453323334 > “02WX24S234"

Display Format: Custom or from the file - size in FLASH - defined size in bytes
Taken from the file or entered manually Ascii string will be saved in the flash memory.
When the Ascii format is selected, then the Ascii string is saved in memory ““as is”.
All Ascii characters can be used. For example the entered following string

02WX24S5234
will be saved in memory as
30325758323453323334 > “02WX24S5234"
When the HEX format is selected, then the string is converted to HEX format (only hex
characters are accepted - 0, 1,2,3,4,5,6,7,8,9, A,B,C,D, E, F.
All two character pairs are converted to hex format and saved in memory.
For example the entered following string
02A3B109E12F
will be saved in memory as
HEX(MSW first) ->02 A3 Bl 09 El 2F
or HEX(LSW first) ->2F E1 09 B1 A302

Location in the target device’s flash memory, where described above bytes are saved, is
specify in the ‘Memory Location - SN Start Address in Memory’ field of the serialization dialogue
screen (see figure 8.2-1). Specified address must be even and should be specified in the empty
memory space, not used by program code or data block

When software detects that any serial number character is using memory location used by
code file, then the following error message will be displayed:

Serial Murber or Model Text is averlaping
! the active code space,

Flease check the serialization setup,

Winuld wou like ko continue writing process anyiway’

Yes Mo

Figure 8.2.1-1

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 50

8.2.3 Model, Group, Revision

Custom text, saved in target device’s flash memory is a string, up to 32 characters long, in
Ascii format. It can contain any text, but this feature is intentionally created to allow the hardware
model, revision and group to be saved. Typically the object code does not contains this kind of
information, but it may be useful in some applications.

This feature is enabled when the check box
ENABLE in the Model/Group/Revision field is marked
(see figure 8.2-1). When enabled, the size of desired text [~ Device Senalization
must be specified in the field ‘Text size in bytes’. Size Adapter Fey.2

value can be any even number between 2 and 32. The
location of the text in the flash memory can be specified m READ SM
in the field ‘Start Address in Memory’. Similarly to the
location of the serial number, the specified address must

Mext Model-Group-Fevizion:

Adapter Rew.?

be even and must be specified in the empty memory

space, unused by program code or data block. Otherwise, Mext SN- IEDDEDDDEE

the error message shown in figure 8.2.1-1 will be Eoimat i1 235

displayed.

Figure 8-2
The text to be saved in the flash memory can be

entered in the ‘Model/Group/Revision text’ edit line. If
the size of entered text exceeds the size specified in the ‘Text size in bytes’ field, then all character
that do not fit in the allocate space will be truncated.

8.2.4 Device Serialization box

Device Serialization box, located on the main programming dialogue screen (see figures 10-2
and 4-1), contains serial number and model information. The first two read only lines contain
information taken from the target device. The next two lines contain model text and serial number
that are to be saved. Whenever a communication with the target device is performed the model text
and serial number is read and displayed in the Device Serialization group.

The ‘Next Model-Group_Revision’ and ‘Next SN’ edit lines can contain any SN and text.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 51

When the device is programmed the next model text is taken from the ‘Model/Group/Revision Text’
of the Serialization dialogue screen. The next SN is generated automatically, according to the setup
in the Serialization . This means that any data entered in the ‘Device Serialization’ group can be
treated as temporary data. This data is downloaded to only one target device.

Current target’s label (model text and serial number) can be read at any time by pressing
READ SN button located in the ‘Device Serialization’ group (see figure 8-2).

8.2.5 Bar Code Scanner setup

Programming software has capability to get a data from the Bar Code Scanner. Bar Code
Scanner should be connected to PC computer in series with the keyboard using the Y cable or to the
USB port. Refer to the Bar Code Scanner manual for details.

Bar Code Scanner when enabled by selecting the ENABLE in the BarCode Scanner group
then can enter scanned data directly to the “Next SN:” edit line. When the new SN is entered then
AUTOPROGRAM function can be started automatically if “Start AUTOPROGRAM following
BarCode scan’ is selected.

By default Bar Code Scanner is sending the CR (ENTER) character as a termination
character following the scanned message. From the “Terminator Character” selector is possible
to get other termination character then CR if required.

Note: Only Ascii characters from Ox21 to OxFE are accepted from the Bar Code Scanner. Others
characters like white characters (space, tab) are ignored. All characters are converted to
the lower case characters.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 52

8.3 Serialization Report Dialogue Screen

Serialization Report Dialogue Screen reports the results of the serialization procedure. The report
contains the detailed information of the two highest serial number programmed units, quantity of
programmed units along with the new created serial numbers, unmodified SN (reprogrammed units),
manually created SN and quantity of the overwritten SN. Detailed information about all programmed
units can be viewed using the Notepad text editor by pressing the ‘NotePad’ button.

Short information of the created serial numbers, format, date and time of programming is
displayed on the white report box (see Figure 8.3-1). Serial numbers are created automatically via
software by incrementing the highest SN taken from the serial number files. If from any reason the
highest serial number is wrong it can be removed from the database by pressing the ‘Delete SN’
button. Note that the delete operation is not reversible.

Serialization Report x|

Serialization File Mame: II::\EIplotronic'\Pmiect\Cpp-Net'\USB-MSF‘430F’rg\data_mem.sn

The Highest Senal Mumber
’7 Lime 8 32 o032 Fl OE02000593 . AUG 17,2008, 22:21 Delete SH |

J Lire: #
----- | 133 033 FO 20070009 . MAR13.2007, 17:40 Delete 5N

Line # Format Senal Number Date, Time Legend:
~Fieport 0120 FO 20070002 U MAR 1320071729 |a] o romats
0121 FO 20070002 U MAR 132007, 17:29 FO - rvv1234(5)
0122 Fo 20070002 U MAR 132007, 17:29 F1 - M1 224(5)
[138 T Newsn 0123 FO 20070003 . MAR 132007, 17:23 F5 -\ MMDD1 234(5)
0124 FO 20070004 . MAR 13,2007, 17-29 F DD 2341
& Unmodiied SN 0125 FO 20070005 . MAR 13,2007, 17:32 : (5]
AMAdE 0126 FO 20070006 . MA&R 13,2007, 17:32 F2- 12345678
0127 FO 20070007 . MAR 132007, 17-33 F3-1234[5]
0128 FO 20070008 . MAR 132007, 17:34 :
[0 @ Manusly entered SN 0123 FO 20070005 . MR 132007 1734 FE - Custem
0120 FO 20070003 . MAR 132007, 1735
[0 & : 0 Fo 20070009 . MAR 13,2007, 17.36
G Ozt 0132 FO 20070003 . MAR 13,2007, 17-37
0122 FO 20070009 . MA&R 13,2007, 17-37
MotePad | 0134 FO 20070009 . M&R 13,2007, 1733
0135 FO 20070009 . MAR 132007, 17:39
0136 FO 20070009 . MAR 132007, 17:39
0137 FO 20070003 . MAR 122007, 17:39
0128 FO 20070009 . MAR 13,2007, 17-33
»0133 FO 20070009 . MAR 13,2007, 17-40
P E sit |

Figure 8.3-1 Serialization Report Dialog screen

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 53

8.4 SN data file

The FlashPro430 software allows to download the serial number from custom defined data
file. When the data file is used then in the serialization dialogue screen the Serial Number Format
-> From File should be selected.

The SN data file can contains list of serial numbers. Format of the serial numbers can be
specified in the serialization dialogue screen (Figure 8.2) as Ascii or HEX. The SN data file can be
created in any DOS editor like Notepad.exe. In this file any data specified after semicolon (;) will
be ignored and can be used as a comment only. Data file should contains header and serial number
list. Following list of commands started from # can be specified in the header:

#SN_LIST
Data file contains Serial number list.

#SN_SIZE number ;optional
Overwrite size of the custom defined serial number size (see Figure 8.2). If the #SN_SIZE
is not specified, then the data specified in the serialization dialogue screen is used.

#SN_PREFIX string ;optional
#SN_SUFFIX string ;optional

Serial number can contains up to 16 characters. If part of characters are the same in specified
serial number list, then the repetable part can be specified in the SN_PREFIX, or
SN_SUFFIX, and only modified part of serial numbers can be listed. Serial number is
combined as a string starting from prefix, modified part and ending with suffix.. For example
if the following serial number should be created

AB2007X-0001-BMR
AB2007X-0002-BMR
AB2007X-0003-BMR

can the SN be specified as follows

#SN_PREFIX AB2007X-
#SN_SUFFIX -BMR

and list of following serial numbers
0001
0002
0003

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 54

Prefix and /or suffix numbers can be modified in the list if required, eg.

#SN_PREFIX AB2007X-
#SN_SUFFIX -BMR
0001

0002

0003

#SN_PREFIX AB2007V-
0001

0002

0003

that defined following serial numbers

AB2007X-0001-BMR
AB2007X-0002-BMR
AB2007X-0003-BMR
AB2007V-0001-BMR
AB2007V-0002-BMR
AB2007V-0003-BMR

Example of the Serial Number list (5 lines only in this example)

7
; Serial Number List
; SN format - Ascii

7
#$IEEE_SN_LIST
#SN_SIZE 12

WX5E2007001P
WX5E2007002P
WX5E2007003P
WX5E2007004P
WX5E2007005P

14

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9

55

The same Serial Number list with specified prefix /suffix

7
; Serial Number List
; SN format - Ascii

#IEEE SN LIST

#SN_SIZE 12

#SN_PREFIX WX5E2007 ;any Ascii character
#SN_SUFFIX P

001
002
003
004
005

14

When the SN data file is prepared, then at the first the data base file should be opened(see
Figure 8.2). When the desired Serial Number Format is selected, then using the SN/IEEE file
button located in the main dialogue screen (Figure 4.1) the desired SN file should be opened.
Selected file is converted to final format and all listed serial numbers are verified with the data base
file if there was note used before. If the specified SN have been used before, then these numbers are
removed from the SN list. When the SN file is read and verified, then the pending SN list is
displayed in the screen (Figure 8.4-1) with following information displayed on the top of the list

* number of the SN found in data base and removed from the pending list

* number of the Serial Numbers with incorrect size and removed from the pending list

* number of the accepted SN

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 56

x|

#¥SH_LIST -
¥SH SIZE & -J

0 — Humber of the SH found in the data base

(removed from the li=st).
0 — Humber of the SH numbers with incorrect =ize
(current =etup — 6 char){removed from the li=t)

10 — Number of the SH attached to the list.
ool 123456
anz 2427211
ans: 2AC712
an4: 2AHZ13
ans: 200714
ole 2¥¥215
anz . 2777218
ang . 2HHZ17
ans . 2MMZ18
a1o: 20EZ19

=
Pa=te to Hotepad Exit

Figure 9.1

When the “Paste to Notepad” button is pressed, then the pending Serial Number list can be saved
in format ready to be used as a valid SN data file if required.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 57

9. Check Sum Options

Programming software has two groups of check sum (CS) calculation. The first group is used
for internal programming verification and the second group can be used for firmware verification
in application software.

The CS used for internal verification is calculating CS only for specified words in the code
file regardless of the flash memory size, location etc. This CS is useful only inside the programmer,
because programmer has all information about programmed and empty bytes location. This method
is also useful if only part of the code is programmed in the flash (append option). All not

programmed words in the programming process are ignored, even if these words are not empty in
the flash.

The check sum used for internal programming verification is displayed in the Check Sum
Group (Figure 9.1) (see the Main Dialog screen - Figure 4.1)

i Check Sum

Source; |EI:-:F23I3EFFE
b ernany: |IZI:-:F23I3EFFE @

Figure 9.1

In the source line is displayed the arithmetic sum of the code contents with added contents
of the serialization, model etc. if selected. Arithmetic sum is calculated as the sum of 16-bits
unsigned words - result is 32 bits unsigned. Only programmed words are taken for calculation. All
other not used words are ignored. All bytes are converted to 16-bits words as follows (for simplicity -
format casting is not present in this example):

word = data[address] + (data[address+1]<<8)
where address is even and incremented by 2.

In the memory line is displayed the CS result taken from the flash memory, calculated in the
same way as the CS taken from the source. Only words defined in the source are taken from the flash
memory for calculation.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 58

Second group of the CS is custom defined Check Sum that can be used by firmware for code
verification in the flash. Up to four CS block can be specified and CS results can be saved in the
flash for verification. Size of each CS block and CS result location in flash are defined by the user.
The Check Sum Options dialog (figure 9-2) is selected from following pull down menu:

Setup -> Check Sum Options

Check Sum Processing Setup -' ﬂ

Checksum type: I CRIC3Z (Poly = 0x04C11DET) (8b [320) Ll

Initial value: | OxFFFFFFFF R PoLY: | 00000

5 Resulk: I Trwerted _:J Ciaka IM word size: I & hits
5 resulk size: | 32 hits

[T owerwrite code contents (i present 1, where the €5 result is saved

— 05 Addresses definition —C5 Resul in Flash
Enable Start Address Stop Address Save Enable €S Address

V51 [oxscoo [oxFFFF Vcst [oason
V 5z [oxi0000 [xaserF V52 [oass
™53 [oxino [ox1000 Ircss Joxioom
[cs4 [oxio00 [oi000 I cs4 [oxoom

Moke:

* The checksum calculation can only be used For code data. Extra data like serialization should
be specified outside of the C5 banks,

* 0xFF bytes are used inskead of unspecified data For C5 calculation,

Cancel | 2k |

Figure 9.2

Start Address should be even, and the Stop Address should be odd. CS result address in the flash
should be even. Make sure that the CS result is saved out of the CS block space. Otherwise the CS
result will modify the contents of the CS inside the specified block. CS result after the second
calculation would not be the same and CS result would be useless.

When the CS Result Save option is not selected then the CS of the selected block is

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 59

calculated and CS result displayed in the report window only (Figure 9.3) This option can be used
for CS code verification defined as the code form Start to End Addresses with OxFF data in the not
specified code location.

Report

Reading Code File ... done :I
- Code zize = 023C08E0 [249276 | bytes
- C51 = 0231752600

- 51 = 031752600

JTAL communication nitialization.. . ak

Yerfing Security Fuse ... ak.

Reading Target Label.................... done

Erasing meman ... done

JTAL communication nitialization.. . ak.

Al rmernary Blank checking............. ak ﬂ
Figure 9.3

Type of the CS can be selected from the following list (Figure 9.4)

Check Sum Processing Setup B i x|

Checksum byvpe: CRC32 (Polv = 0x04C11DB7Y C 8b f 320 Y ;‘
none
Initial walue: Arithmetic sum (8b/16b)
Arithmetic sum (gb[32h)
: Arithmetic sum i1ab [16b)
C5 Result: Arithmetic sum (16b 32k
CRC16 (Poly = 0x11021) (&b} 16b)
CRCIE. defined polynomial | &b 1E.|:|

CRC32 (Polv = 0x04C11DE7 (80
[T Overwrite cd CRCSE defined polynomial | &b) 32|:|]l

Figure 9.4

Initial value for CS calculation can be selected as zero, all 0xFFs or as the Start Address from
pull down menu (Figure 9.5).

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 60

Checksum type: | CRC32 (Paoly = 0x04C11067

Initial walue: %
Q00000000

5 Resulk:
5 Start Address

Figure 9.5

CS result can be used As Is or can be inverted (Figure 9.6).

Checksum bype: | CRC32 (Poly = 0x04C11DE7)

Initial walue: I 0xFFFFFFFF ;‘

Z5 Result;

Figure 9.6

Data size (byte or 16 bits word) used for calculation and CS result size is displayed in the
dialog screen as Data IN word size and CS Result size (Figure 9.2). Polynomial contents (if
required) can be specified in the POLY edit line in HEX format (eg. 0x1234).

9.1 Check Sum types

Following Check Sum types are implemented (Figure 9.4)

Arithmetic Sum (8b / 16b)
Check Sum is calculated as modulo 16-bits sum of all bytes (unsigned) from Start to the End

Addresses as follows

CS = CS_initial_value;
for (addr = StartAddress; addr <= EndAddress; addr++)

{

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 61

CS = CS + (unsigned int) dataladdr];
}
CS = OxXFFFF & CS;
if(cs_inverted)
CS = OxXFFFF ~ CS;

Arithmetic Sum (8b /32b)

Check Sum is calculated as modulo 32-bits sum of all bytes (unsigned) from Start to the End
Addresses as follows

CS = CS_initial_value;
for (addr = StartAddress; addr <= EndAddress; addr++)
{
CS = CS + (unsigned long) dataladdr];
}
CS = OxXFFFFFFFF & CS;
if(cs_inverted)
CS = OxXFFFFFFFF ~ CS;

Arithmetic Sum (16b / 16b)

Check Sum is calculated as modulo 16-bits sum of all 2-byte words (unsigned) from Start
to the End Addresses as follows

CS = CS_initial_value;
for (addr StartAddress; addr <= EndAddress; addr=addr+2)
{
CS = CS + (unsigned int)dataladdr] + (unsigned int)dataladdr+1];
}
CS = OxXFFFF & CS;
if(cs_inverted)
CS = OxXFFFF ~ CS;

Arithmetic Sum (16b / 32b)

Check Sum is calculated as modulo 32-bits sum of all 2-byte words (unsigned) from Start
to the End Addresses as follows

CS = CS_initial_value;

for (addr = StartAddress; addr <= EndAddress; addr=addr+2)

{

CS = CS+(unsigned long)dataladdr] + (unsigned long)dataladdr+1];

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 62

}
CS = OxXFFFFFFFF & CS;
if(cs_inverted)
CS = OxXFFFFFFFF ~ CS;

CRC16 (Poly 0x11201) -(8b/16b) (Namedas CRCCCITT)

and

CRC16 defined polynomial - (8b/16b)

Check Sum is calculated as CRC16 from each bytes from Start to the End Addresses as
follows

CS = CS_initial_value;
for (addr = StartAddress; addr <= EndAddress; addr++)

{
CS = CS_CRC1l6_8tol6((long)dataladdr], CS);

}
CS = OxXFFFF & CS;
if(cs_inverted)
CS = OxFFFF ~ CS;

where

unsigned long CS_CRC16_8tol6(long data, unsigned long crc)
{

unsigned long tmp;
tmp = OxXFF & ((crc >> 8) ~ data);
crc = (crc << 8) ” crc_tab32[tmp];
return(OxXFFFF & crc);

The CRC table is generated first as follows:

CS_init_crcl6_tab(0x1021); for CRC CCITT
CS_init_crcl6_tab(CRC_def POLY); for CRC16 defined polynomial

where

void CS_init_crcl6_tab(unsigned short poly)
{

int i, J;

unsigned short crc, c;

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 63

for (i=0; 1<256; i++)
{
crc = 0;
c = ((unsigned short) i) << 8;

for (j=0; 3j<8; Jj++)
{

if ((crc ~ c) & 0x8000)
crc = (crc << 1) ” poly;
else
crc = crc << 1;
c = c << 1;
}
crc_tab32[i] = (unsigned long) (0XFFFF & crc);

CRC32 (Poly 0x04C11DB7) -(8b/32b) (Named as IEEE 802-3)

and

CRC(C32 defined polynomial - (8b/32b)

Check Sum is calculated as CRC32 from each bytes from Start to the End Addresses as
follows

CS = CS_initial_value;
for (addr = StartAddress; addr <= EndAddress; addr++)
{

CS = CS_CRC32_8to32((long)dataladdr], CS);
}
CS = OxXFFFFFFFF & CS;
if(cs_inverted)

CS = OxXFFFFFFFF ~ CS;

where
unsigned long CS_CRC32_8to32(long data, unsigned long crc)
{
return(((crc >> 8) & OxO0FFFFFF) ~ crc_tab32[0xFF & (crc » data)]);

The CRC table is generated first as follows:
CS_init_crec32_tab(0x04Cl11DB7) for IEEE 802-3

a polynomial of

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 64

x32 +x26 +x23 +x22 +x16 + x12 + x11 + x10+ x8 +x7 + x5+ x4 +x2 +x + 1

and
CS_init_crc32_tab(CRC_def_POLY) for CRC32 defined polynomial

where

void CS_init_crec32_tab(unsigned long poly in)
{

int n, k;

unsigned long c, poly;

poly 0L;
for (n = 0; n < 32; n++)
{

poly <<= 1;

poly |= 1L & poly_in;

poly_in >>= 1;

for (n = 0; n < 256; n++)

(unsigned long)nj;
for (k = 0; k < 8; k++)
c=c¢ &1 ? poly ~ (c > 1) : c > 1;
crc_tab32[n] = c;

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9

10. BSL Password and Access

The MSP430 bootstrap loader (BSL) enables users to communicate with the MSP430 even
if the JTAG security fuse is blown. Access to the MSP430 memory via BSL interface is protected
against unauthorized access by a user-defined password. The BSL password itself consist 32 bytes
on location OxFFEO to OxFFFF. This flash memory location is also used by the interrupt vector. If
all interrupt location available in the MSP430 are used and specified, then the BSL password is used
in fully and unauthorized access probability to the MSP430 is very low. But in a lot of application
only part of the interrupt vector is defined. After mass erase all unspecified password data will be
0xFF and probability of the unauthorized access to the MSP430 becomes much higher. It is strongly
recommended to initialize unspecified data in the interrupt vector to decrease probability of the

unauthorized access to the MSP430.

Boot Strap Loadre{ BSL) Password and Access B ﬂ
Mote: The dezired Code File and the kMicrocontraller tvpe should be zelected before modification of the BSL
Enhanced Secunty and Password Data.

—B5L Enhanced Securnty [BSL werzion 2.0 and higher only]
¥ Enable
% Do not eraze flash memony if an incomrect BSL password has been uzed,
£ Erase the flash memary if an incomect BSL password has been uzed,
" Dizable BSL access.
Mate: The B5L Enhanced Security setup iz dizabled if the flazh location:
0=FFDE-OFFDF [MSP430) or 0<FFBE-O<FFEF [MSP430 %] iz uzed.
— BSL Pazzward
¥ Enable
Addiezs 1] 1 2 a4 G G 7 8 9 A B B e GE F
rreo [[[72 I3+ [e€ [Fe [72 [Fe [28 [re [ac [P [[Fe [ee [re
Mote; Only unuzed in the code file the flazh location can be edited,
The B5L paszsword itzelf congist 32 byutesz on location FFED to FEFF. After maszs eraze all unzpecified
pazaword data will be FF. [t iz strongly recommended ta initialize unuzed data to increaze code security.
Create Pazsword File I] 4 | Cancel |
Figure 10.1
FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 66

he BSL Password and Access dialogue (figure 10.1) allows to edit the undefined data located in the

flash memory in location OxFFEOQ to OxFFFF. In the BSL Password group all unused data can be
specified. An access to particular flash location is disabled (grey field on the screen) if specified
data is defined in the code file. All unused in the code file locations between OxFFEO and OxFFFF
are enabled (white) and can be edited.

Note: The code contents always has a higher priority then an edited BSL data password. If the new
code file is used and the same location is used in the code file and data specified in the BSL
Password dialogue screen, then the data specified in the BSL Password dialogue will be ignored.

The Create Password File button allows to create BSL passwor file, then can be used in the
future to unlock an access to programmed MSP430 devices.

The newest MSP430 microcontrollers with the BSL version 2.0 and higher have enhanced
security features. These features are controlled by the Flash data word located below the interrupt
vector e.g OxFFDE for the MSP430 and OxFFBE for the extended MSP430X . If this word
contains:

0x0000: The flash memory will not be erased if an incorrect BSL password has been
received by the target. It is the same features like in all MSP430 with an older
BSL version.

0xAASS: The BSL is disabled. This means that the BSL communication can not be
established.
All other values: If an incorrect password is transmitted then the whole flash memory will be

erased automatically, to protect unauthorized access to the MSP430 device.

Desired option can be selected in the BSL Enhanced Security group of the BSL Password and
Access dialogue. Option can be used only when the BSL version is 2.0 or higher.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 67

11. Load/Save Setup

Programming software can save configuration settings in the configuration files or save the
whole project configuration with used code contents and save it in the encrypted project file . This
allows the user to create several configuration or project fils, one for a particular task, and thus
eliminates the need to manually change settings every time a different configuration is desired.
Furthermore, the config.ini file contains the most recently used settings and those settings will be
used as default whenever the software is started.

11.1 Load/ Save Setup

To create a configuration file simply select Save Setup from the File menu. Current settings
will be saved for future use. To restore configuration settings select Load Setup from File menu and
select a file containing the settings you wish to restore.

In order to prevent accidental setup changes the MSP430 Programmer provides the option
to Lock configuration settings. When the user selects the Lock/Unlock Setup option from the Setup
menu, the MSP430 Flash Programmer will prevent the user from modifying the setup. The only
options that are available when the programmer is locked are Verify, Read, Autoprogram and Next.
Notice that the Next button will immediately change to implement the Autoprogram function. To
unlock the programmer the user must select the Lock/Unlock Setup option from the Setup menu.

11.2 Load / Save Project

The Project option (Save/Load) contains more then the programmer configuration only, but
can also the code and the BSL password used in the project. Contents of the project file is encrypted,
so it is not possible to read the contents of the used code downloaded to target device. When the
project is opened then the same decryption key must be used as it was used in the encryption process,
otherwise decryption will not succeed. Encryption key depends from the used type of software
(FlashPro430, GangPro430, etc.) used password or destination’s PC “hardware fingerprint”
number. So - the project file created with the FET-Pro430 software cannot be used with the
FlashPro430 or GangPro430 and vice-verse. Each project file should be create in the same type of
software. Project file is CRC protected and CRC check is performed when the file is loaded .

Project can be unprotected or protected with the destination PC ‘“hardware fingerprint”
number or password protected. This allows to create the project that can be used only on the specific
PC when the project is encrypted with the destination PC “hardware fingerprint” number (useful in

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 68

production) or create the project that can be used only when the correct password is entered every
time when the project is open. Project can be unlocked or locked with almost all blocked buttons and
pull down menu items. When the project is locked, then only major buttons like Autoprogram or
Verify are active - and only a few pull-down menu items are accessible. All options that allows to
read the code contents are blocked.

When the new project is create then it is recommended to select the New Setup from pull
down menu and set the default option of all parameters and names used in the programmer. As the
next - the desired processor, code file, password file if required and all desired option (see all
available options described in this manual) should be selected. When it is done, it should be verified
if programmers works as expected. When all works, then the current setup can be saved as the
project file. Select the Save Project as.. from File pull down menu. Following dialogue will be
displayed (Figure 10.2-1) that allows to select desired project option

Following options can be selected:

Project Security Options l ﬂ

~Project proktection

¥ Any PC - nok protecked

™ Any PC - Password protected

Password: |

Repeat password: |
Case sensitive password

™ Selected PC - Hardware Fingerprint number

PZ Hardware Fingerprint #: I

Format: mxie-mniy where X-hex

~Locking options
[~ Locked Project [T | LockediRead options

7 Untock with password

Password: |

Repeat password: |

Case sensitive password

conel_|

Figure 11.2-1

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 69

Project protection:
Any PC - not protected.
When this option is selected then project is not protected and can be opened on any
PC without restrictions.

Any PC - Password protected.
When this option is selected then project can be opened when the password is
correct. The desired password should be entered in two edit lines. Password is case
sensitive and takes up to 16 characters - space including.

Selected PC - Hardware Fingerprint
When this option is selected then project can be opened only on one desired PC
where the PC’s “hardware fingerprint’’ number taken from the destination PC is the
same as the number used when the project has been created. This option is useful in
production because project can be opened automatically without password on the
desired PC. The same project file cannot work on other computers. When the project
is created for particular PC, then the PC “hardware fingerprint” number should be
taken from the desired PC and entered in the edit line in dialogue screen (figure 11.2-
1). This number has hardcoded format and contains eight hex characters with dash
between 4™ and 5™ character eg.

6FA4-E397

Notice, that the project created with the desired PC’s “hardware fingerprint”’
number will not work on the PC where the project has been created, because
“hardware fingerprint” numbers on the destination PC and the PC used for creating
a projet are not the same. It is possible to create the project with the PC’s “hardware
Jfingerprint” number taken from his own PC, create a project and check if work as
expected. When all is OK, then project should be saved again with the desired PC’s
“hardware fingerprint” number.

PC’s “Hardware fingerprint” number used with the project can be read by selecting
the “PC Hardware fingerprint number” option from pull down menu

About/Help -> PC Hardware fingerprint number

Following message box is displayed when the option above is selected (figure 11.2-2)

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 70

x

This P Hardware Fingerprink Mumber

FCDE-CESS

ok |

Figure 11.2-2

Locking option:

Locked Project

1. When not selected, then project is not locked. All contents can be modified and all
buttons are accessible.

2. When selected then project is locked. Almost all buttons are disabled (grayed) and
almost all items in the pull down menu are disabled.
When the project is locked, then it is possible to select - permanently lock project,
or select an option that it is possible to unlock the project under password. The
unlock password can be not the same as the password used for opening the project.

Locked Read options
When selected then the code viewers and READ button are blocked and not allows
to read the code contents downloaded to target device. If the security fuse is blown
after programming the target device, then code cannot be seen by the staff
downloading code to target devices.

Unlock with password
When project is locked then it is possible to select option “unlock with password”
and specify up to 16 characters unlocking password. Password is case sensitive.
On the figure 11.2-3 is a “Project Security Options” dialogue screen with selected
options
Project protected with PC’s “hardware fringerprint” number, locked and
unlocked with password.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 71

Project Security Dptions i 5]

—Project prokection

" Any PC - not protected

£ any PC - Password protected

Password; |

Repeat password: |
Case sensitive password

¥ Selected PC - Hardware Fingerprint number

PC Hardware Fingerprint #: I FCDE-CES3

Format; ®Xxx-xiy where ¥-hex

~Locking options
¥ Locked Project W Locked Read options

¥ UnLock with passwiord

Passward: i I Y T T

Repeat password: I SASEIBBERBEN

Case sensitive password

amel_|

Figure 11.2-3

By default, project is not protected and not locked. This allows to create unprotected project and
open it at any time on any PC without restrictions. All buttons and items on the dialogue screen are
not blocked.

11.3 Commands combined with the executable file

Programming executable file can be opened with project file having extension FET430prj eg.
FET-Pro430.exe test. FET430prj

The Folder option in Windows can also be configured to open the programming executable file

(FET-Pro430.exe) when the file with extension FET430pr;j is selected. That allows to easy and fast

opening the Flash Programmer with configuration taken from the *.FET430prj file.

Project file or configuration setup file (or Code / Password file) can be opened using Load
Setup (Load Code / Password File) option from File menu or can also be opened using command
line combined with the executable file name. Following command line switches are available
-prj Project file name (Open Project file)

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 72

-sf Setup_file_name (Open Setup file)

-cf Code_file_name (Open Code file)

-nf SN_ file_name (Open Serial number list file)
-lock

Note: When the -cf option is used, then code file name saved in the setup file (configuration
file) is ignored and code file name specified with key -cf is used.
When the -prj option is used, then the -sf, -cf, options are ignored.

CEE 2|

; Type the name of a program, Folder, document, or
: Internet resource, and Windows will openit For vou,

JpEn: I "Z:\Program Files\ElprotroniciUSE FlashPro4304U36- j

(4 Cancel | Browse. .., |

Figure11.3-1

Using Windows START button (left bottom) select Run.. Using Browse.. find and select executable
file (see Figure 11.3-1)

“C:\Program Files\Elprotronic\FET-Pro430 Flash Programmer\FET-Pro430.exe"

and at the end enter the required key with name of the setup file eg.

C:\Program Files\Elprotronic\FET-Pro430 Flash Programmer\FET-Pro430.exe" -sf E:\ElproTronic\MFG\prg-04.cfg

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 73

To fully lock the configuration setup the extra key “-lock” can be added in the command line eg.

“C:\Program Files\Elprotronic\FET-Pro430 Flash Programmer\FET-Pro430.exe" -lock -sf E:\ElproTronic\MFG\prg-04.cfg
or
“C:\Program Files\Elprotronic\FET-Pro430 Flash Programmer\FET-Pro430.exe" -sf E:\ElproTronic\MFG\prg-04.cfg

Following configuration setup can be created using Shortcut options that allows to create a
lot of icons located on the desktop - each icon with required independent configuration setup. To do
that move the cursor to inactive desktop area, click right mouse button and select New (see Figure
11.3-3)

Ron 2| x|

- Type the name of a program, folder, document, or
Internet resource, and Windows will open it For you,

Cpen: IISP43EI-Prg.exe" -sFE:'l,EIprnTru:lnin:'l,MFG'l,prg-EH.n:Fgj

(8] 4 Cancel Braowse. ..

Figure 11.2

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 74

Using Browse.. in the Create Shortcut dialogue box select the following executable file

“C:\Program Files\Elprotronic\FET-Pro430 Flash Programmer\FET-Pro430.exe"

(see Figure 11.3-4) and at the and add the required command keys (see Figure 11.-35) eg.

“C:\Program Files\Elprotronic\FET-Pro430 Flash Programmer\FET-Pro430.exe" -lock -sf E:\ElproTronic\MFG\prg-04.cfg

arrange Icons By 3
Refresh

Faste
Faste Shorbeut

| Undo Copy Chrl+-2
G5 o
| Properties g Shorbout

E Briefcase

lﬂﬂ Microsaft Word Docurnent

ﬂ” Microsoft PawerPoint Presentation
Figure 11.3-3

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 75

Create Shortcut B ﬂ

This wizard helps wou ko create shorkcuts to local o
network programs, files, folders, computers, or Internet
addresses,

Type the location of the item:

156 FlashPro430\USE-M3P430-Prg.exe” Browse. .. |

Click Mext to continue.

= Back I Mext = I Cancel

Figure 11.3-4

Create Shortcut o ﬁl

This wizard helps vou ko create shorkcuts to local or
netwark programs, files, folders, computers, or Inkernet
addresses,

Twpe the location of the ikem:

-Prg.exe” -lock -sf EX\MFG\prg-04.cF Browse.., |

Click. Mext to continue.

= Back: I Mext = I Cancel

Figure 11.3-5

Click button Next and follow instruction to create icon. Using Copy and Paste and modify required
configuration file names a lot of icons can be created with independent configuration setups.
Clicking on the selected icon FET-Pro430 programming software will start with the selected
configuration setup, and locked if required.

FET-Pro430 - MSP430 Flash Programmer PMO14A01 Rev.9 76

